Suppr超能文献

靶向代谢组学作为鉴别内分泌性高血压与原发性高血压的工具。

Targeted Metabolomics as a Tool in Discriminating Endocrine From Primary Hypertension.

机构信息

Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zurich, Switzerland.

Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, UK.

出版信息

J Clin Endocrinol Metab. 2021 Mar 25;106(4):1111-1128. doi: 10.1210/clinem/dgaa954.

Abstract

CONTEXT

Identification of patients with endocrine forms of hypertension (EHT) (primary hyperaldosteronism [PA], pheochromocytoma/paraganglioma [PPGL], and Cushing syndrome [CS]) provides the basis to implement individualized therapeutic strategies. Targeted metabolomics (TM) have revealed promising results in profiling cardiovascular diseases and endocrine conditions associated with hypertension.

OBJECTIVE

Use TM to identify distinct metabolic patterns between primary hypertension (PHT) and EHT and test its discriminating ability.

METHODS

Retrospective analyses of PHT and EHT patients from a European multicenter study (ENSAT-HT). TM was performed on stored blood samples using liquid chromatography mass spectrometry. To identify discriminating metabolites a "classical approach" (CA) (performing a series of univariate and multivariate analyses) and a "machine learning approach" (MLA) (using random forest) were used.The study included 282 adult patients (52% female; mean age 49 years) with proven PHT (n = 59) and EHT (n = 223 with 40 CS, 107 PA, and 76 PPGL), respectively.

RESULTS

From 155 metabolites eligible for statistical analyses, 31 were identified discriminating between PHT and EHT using the CA and 27 using the MLA, of which 16 metabolites (C9, C16, C16:1, C18:1, C18:2, arginine, aspartate, glutamate, ornithine, spermidine, lysoPCaC16:0, lysoPCaC20:4, lysoPCaC24:0, PCaeC42:0, SM C18:1, SM C20:2) were found by both approaches. The receiver operating characteristic curve built on the top 15 metabolites from the CA provided an area under the curve (AUC) of 0.86, which was similar to the performance of the 15 metabolites from MLA (AUC 0.83).

CONCLUSION

TM identifies distinct metabolic pattern between PHT and EHT providing promising discriminating performance.

摘要

背景

内分泌性高血压(EHT)患者(原发性醛固酮增多症[PA]、嗜铬细胞瘤/副神经节瘤[PPGL]和库欣综合征[CS])的识别为实施个体化治疗策略提供了基础。靶向代谢组学(TM)在分析心血管疾病和与高血压相关的内分泌疾病方面取得了有希望的结果。

目的

使用 TM 来确定原发性高血压(PHT)和 EHT 之间的不同代谢模式,并测试其区分能力。

方法

回顾性分析来自欧洲多中心研究(ENSAT-HT)的 PHT 和 EHT 患者。使用液相色谱-质谱法对储存的血液样本进行 TM。为了识别有区别的代谢物,采用了“经典方法”(CA)(进行一系列单变量和多变量分析)和“机器学习方法”(MLA)(使用随机森林)。该研究包括 282 名成年患者(52%为女性;平均年龄 49 岁),分别患有已证实的 PHT(n = 59)和 EHT(n = 223,其中 40 例 CS、107 例 PA 和 76 例 PPGL)。

结果

在 155 种适合进行统计分析的代谢物中,使用 CA 确定了 31 种代谢物可区分 PHT 和 EHT,使用 MLA 确定了 27 种代谢物,其中 16 种代谢物(C9、C16、C16:1、C18:1、C18:2、精氨酸、天冬氨酸、谷氨酸、鸟氨酸、亚精胺、溶血 PCaC16:0、溶血 PCaC20:4、溶血 PCaC24:0、PCaeC42:0、SM C18:1、SM C20:2)通过两种方法均被发现。基于 CA 中前 15 种代谢物构建的接收器工作特征曲线提供了 0.86 的曲线下面积(AUC),与 MLA 中 15 种代谢物的性能(AUC 0.83)相似。

结论

TM 可识别 PHT 和 EHT 之间的不同代谢模式,提供了有前景的区分性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验