Reel Smarti, Reel Parminder S, Erlic Zoran, Amar Laurence, Pecori Alessio, Larsen Casper K, Tetti Martina, Pamporaki Christina, Prehn Cornelia, Adamski Jerzy, Prejbisz Aleksander, Ceccato Filippo, Scaroni Carla, Kroiss Matthias, Dennedy Michael C, Deinum Jaap, Eisenhofer Graeme, Langton Katharina, Mulatero Paolo, Reincke Martin, Rossi Gian Paolo, Lenzini Livia, Davies Eleanor, Gimenez-Roqueplo Anne-Paule, Assié Guillaume, Blanchard Anne, Zennaro Maria-Christina, Beuschlein Felix, Jefferson Emily R
Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee DD2 4BF, UK.
Diabetologie und Klinische Ernährung, Klinik für Endokrinologie, UniversitätsSpital Zürich (USZ) und Universität Zürich (UZH), CH-8091 Zurich, Switzerland.
Metabolites. 2022 Aug 16;12(8):755. doi: 10.3390/metabo12080755.
Hypertension is a major global health problem with high prevalence and complex associated health risks. Primary hypertension (PHT) is most common and the reasons behind primary hypertension are largely unknown. Endocrine hypertension (EHT) is another complex form of hypertension with an estimated prevalence varying from 3 to 20% depending on the population studied. It occurs due to underlying conditions associated with hormonal excess mainly related to adrenal tumours and sub-categorised: primary aldosteronism (PA), Cushing's syndrome (CS), pheochromocytoma or functional paraganglioma (PPGL). Endocrine hypertension is often misdiagnosed as primary hypertension, causing delays in treatment for the underlying condition, reduced quality of life, and costly antihypertensive treatment that is often ineffective. This study systematically used targeted metabolomics and high-throughput machine learning methods to predict the key biomarkers in classifying and distinguishing the various subtypes of endocrine and primary hypertension. The trained models successfully classified CS from PHT and EHT from PHT with 92% specificity on the test set. The most prominent targeted metabolites and metabolite ratios for hypertension identification for different disease comparisons were C18:1, C18:2, and Orn/Arg. Sex was identified as an important feature in CS vs. PHT classification.
高血压是一个主要的全球健康问题,患病率高且伴有复杂的健康风险。原发性高血压(PHT)最为常见,其背后的原因在很大程度上尚不清楚。内分泌性高血压(EHT)是另一种复杂的高血压形式,根据所研究的人群不同,其估计患病率在3%至20%之间。它是由与激素过多相关的潜在疾病引起的,主要与肾上腺肿瘤有关,并可细分为:原发性醛固酮增多症(PA)、库欣综合征(CS)、嗜铬细胞瘤或功能性副神经节瘤(PPGL)。内分泌性高血压常被误诊为原发性高血压,导致对潜在疾病的治疗延误、生活质量下降以及昂贵且往往无效的降压治疗。本研究系统地使用靶向代谢组学和高通量机器学习方法来预测在分类和区分内分泌性高血压和原发性高血压的各种亚型中的关键生物标志物。训练后的模型在测试集上以92%的特异性成功地将CS与PHT以及EHT与PHT区分开来。在不同疾病比较中用于高血压识别的最突出的靶向代谢物和代谢物比率为C18:1、C18:2和Orn/Arg。性别被确定为CS与PHT分类中的一个重要特征。