Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
Metabolomics. 2024 Nov 3;20(6):124. doi: 10.1007/s11306-024-02182-3.
The global incidence of hypertension, a condition of elevated blood pressure, is rising alarmingly. According to the World Health Organization's Qatar Hypertension Profile for 2023, around 33% of adults are affected by hypertension. This is a significant public health concern that can lead to serious health complications if left untreated. Metabolic dysfunction is a primary cause of hypertension. By studying key biomarkers, we can discover new treatments to improve the lives of those with high blood pressure.
This study aims to use explainable artificial intelligence (XAI) to interpret novel metabolite biosignatures linked to hypertension in Qatari Population.
The study utilized liquid chromatography-mass spectrometry (LC/MS) method to profile metabolites from biosamples of Qatari nationals diagnosed with stage 1 hypertension (n = 224) and controls (n = 554). Metabolon platform was used for the annotation of raw metabolite data generated during the process. A comprehensive series of analytical procedures, including data trimming, imputation, undersampling, feature selection, and biomarker discovery through explainable AI (XAI) models, were meticulously executed to ensure the accuracy and reliability of the results.
Elevated Vanillylmandelic acid (VMA) levels are markedly associated with stage 1 hypertension compared to controls. Glycerophosphorylcholine (GPC), N-Stearoylsphingosine (d18:1/18:0)*, and glycine are critical metabolites for accurate hypertension prediction. The light gradient boosting model yielded superior results, underscoring the potential of our research in enhancing hypertension diagnosis and treatment. The model's classification metrics: accuracy (78.13%), precision (78.13%), recall (78.13%), F1-score (78.13%), and AUROC (83.88%) affirm its efficacy. SHapley Additive exPlanations (SHAP) further elucidate the metabolite markers, providing a deeper understanding of the disease's pathology.
This study identified novel metabolite biomarkers for precise hypertension diagnosis using XAI, enhancing early detection and intervention in the Qatari population.
高血压是一种血压升高的病症,其全球发病率正在惊人地上升。根据世界卫生组织 2023 年卡塔尔高血压概况,约有 33%的成年人受到高血压的影响。如果不加治疗,这是一个严重的公共卫生问题,可能导致严重的健康并发症。代谢功能障碍是高血压的主要原因。通过研究关键生物标志物,我们可以发现新的治疗方法,改善高血压患者的生活。
本研究旨在使用可解释人工智能(XAI)解释与卡塔尔人口高血压相关的新型代谢物生物标志物。
该研究利用液相色谱-质谱(LC/MS)方法对 224 名被诊断为 1 期高血压的卡塔尔国民和 554 名对照者的生物样本中的代谢物进行分析。代谢组学平台用于注释在该过程中生成的原始代谢物数据。通过可解释人工智能(XAI)模型,精心执行了一系列全面的分析程序,包括数据修剪、插补、欠采样、特征选择和生物标志物发现,以确保结果的准确性和可靠性。
与对照组相比,香草扁桃酸(VMA)水平升高与 1 期高血压明显相关。甘油磷酸胆碱(GPC)、N-硬脂酰鞘氨醇(d18:1/18:0)*和甘氨酸是准确预测高血压的关键代谢物。轻梯度提升模型产生了更好的结果,突出了我们在增强高血压诊断和治疗方面的研究潜力。该模型的分类指标:准确性(78.13%)、精度(78.13%)、召回率(78.13%)、F1 分数(78.13%)和 AUROC(83.88%)证实了其有效性。Shapley Additive exPlanations(SHAP)进一步阐明了代谢物标志物,提供了对疾病病理的更深入理解。
本研究使用 XAI 为精确的高血压诊断确定了新型代谢物生物标志物,增强了在卡塔尔人群中对高血压的早期检测和干预。