Suppr超能文献

一种电化学驱动的混合界面,可实现用于水系锌电池的稳定通用锌金属电极。

An electrochemically driven hybrid interphase enabling stable versatile zinc metal electrodes for aqueous zinc batteries.

作者信息

Ma Dingtao, Li Fan, Ouyang Kefeng, Chen Qiuting, Zhao Jinlai, Chen Minfeng, Yang Ming, Wang Yanyi, Chen Jizhang, Mi Hongwei, He Chuanxin, Zhang Peixin

机构信息

College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, China.

College of Materials Science and Engineering, Shenzhen University, 518060, Shenzhen, China.

出版信息

Nat Commun. 2025 May 23;16(1):4817. doi: 10.1038/s41467-025-60190-w.

Abstract

Aqueous Zn ion batteries are advantageous in terms of safety and cost, while their sustainable applications are usually impeded by dendrite growth and interfacial side reactions. Here, we present the development of an electrochemically driven artificial solid-state electrolyte interphase, utilizing a metal surface coupling agent phosphate ester as a protective layer for Zn negative electrodes. Upon cycling, the protective layer in situ transforms into a hybrid phase enriched with well dispersed Zn(PO) nanocrystals. This transformation ensures a uniform Zn flux, effectively suppresses dendrite growth, and mitigates side reactions. In addition, such protective layer ensures Zn electrode stable plating/stripping performance for 1500 h at 10 mA cm and 1 mAh cm, while pouch cells coupled with NaVO·1.5HO deliver ampere-hour level capacity. Beyond that, its robust adhesion and flexibility enable the Zn electrode to maintain good performance under a variety of harsh conditions. This approach provides valuable insights into the advancement of Zn metal batteries.

摘要

水系锌离子电池在安全性和成本方面具有优势,但其可持续应用通常受到枝晶生长和界面副反应的阻碍。在此,我们展示了一种电化学驱动的人工固态电解质界面的开发,利用金属表面偶联剂磷酸酯作为锌负极的保护层。在循环过程中,保护层原位转变为富含均匀分散的Zn₃(PO₄)₂纳米晶体的混合相。这种转变确保了均匀的锌通量,有效抑制了枝晶生长,并减轻了副反应。此外,这种保护层确保锌电极在10 mA cm⁻²和1 mAh cm⁻²的条件下具有1500小时的稳定镀/剥性能,而与Na₃VO₄·1.5H₂O耦合的软包电池可提供安培小时级的容量。除此之外,其强大的附着力和柔韧性使锌电极在各种苛刻条件下仍能保持良好性能。这种方法为锌金属电池的发展提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6060/12102169/3f6e469a957b/41467_2025_60190_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验