Suppr超能文献

用于预测白内障手术中人工晶状体术后位置的梯度提升决策树算法

Gradient Boosting Decision Tree Algorithm for the Prediction of Postoperative Intraocular Lens Position in Cataract Surgery.

作者信息

Li Tingyang, Yang Kevin, Stein Joshua D, Nallasamy Nambi

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.

出版信息

Transl Vis Sci Technol. 2020 Dec 21;9(13):38. doi: 10.1167/tvst.9.13.38. eCollection 2020 Dec.

Abstract

PURPOSE

To develop a method for predicting postoperative anterior chamber depth (ACD) in cataract surgery patients based on preoperative biometry, demographics, and intraocular lens (IOL) power.

METHODS

Patients who underwent cataract surgery and had both preoperative and postoperative biometry measurements were included. Patient demographics and IOL power were collected from the Sight Outcomes Research Collaborative (SOURCE) database. A gradient-boosting decision tree model was developed to predict the postoperative ACD. The mean absolute error (MAE) and median absolute error (MedAE) were used as evaluation metrics. The performance of the proposed method was compared with five existing formulas.

RESULTS

In total, 847 patients were assigned randomly in a 4:1 ratio to a training/validation set (678 patients) and a testing set (169 patients). Using preoperative biometry and patient sex as predictors, the presented method achieved an MAE of 0.106 ± 0.098 (SD) on the testing set, and a MedAE of 0.082. MAE was significantly lower than that of the five existing methods ( < 0.01). When keratometry was excluded, our method attained an MAE of 0.123 ± 0.109, and a MedAE of 0.093. When IOL power was used as an additional predictor, our method achieved an MAE of 0.105 ± 0.091 and a MedAE of 0.080.

CONCLUSIONS

The presented machine learning method achieved greater accuracy than previously reported methods for the prediction of postoperative ACD.

TRANSLATIONAL RELEVANCE

Increasing accuracy of postoperative ACD prediction with the presented algorithm has the potential to improve refractive outcomes in cataract surgery.

摘要

目的

基于术前生物测量、人口统计学和人工晶状体(IOL)度数,开发一种预测白内障手术患者术后前房深度(ACD)的方法。

方法

纳入接受白内障手术且术前和术后均进行生物测量的患者。从视力结果研究协作组(SOURCE)数据库收集患者的人口统计学数据和IOL度数。开发一种梯度提升决策树模型来预测术后ACD。使用平均绝对误差(MAE)和中位数绝对误差(MedAE)作为评估指标。将所提出方法的性能与五个现有公式进行比较。

结果

总共847例患者以4:1的比例随机分配到训练/验证集(678例患者)和测试集(169例患者)。使用术前生物测量和患者性别作为预测因子,所提出的方法在测试集上的MAE为0.106±0.098(标准差),MedAE为0.082。MAE显著低于五个现有方法(<0.01)。排除角膜曲率测量值后,我们的方法MAE为0.123±0.109,MedAE为0.093。当将IOL度数用作额外的预测因子时,我们的方法MAE为0.105±0.091,MedAE为0.080。

结论

所提出的机器学习方法在预测术后ACD方面比先前报道的方法具有更高的准确性。

转化相关性

使用所提出的算法提高术后ACD预测的准确性有可能改善白内障手术的屈光效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4964/7757635/062649e00fb5/tvst-9-13-38-f001.jpg

相似文献

1
Gradient Boosting Decision Tree Algorithm for the Prediction of Postoperative Intraocular Lens Position in Cataract Surgery.
Transl Vis Sci Technol. 2020 Dec 21;9(13):38. doi: 10.1167/tvst.9.13.38. eCollection 2020 Dec.
2
Ray tracing intraocular lens calculation performance improved by AI-powered postoperative lens position prediction.
Br J Ophthalmol. 2023 Apr;107(4):483-487. doi: 10.1136/bjophthalmol-2021-320283. Epub 2021 Dec 2.
3
Accuracy of intraocular lens calculation formulas in cataract patients with steep corneal curvature.
PLoS One. 2020 Nov 20;15(11):e0241630. doi: 10.1371/journal.pone.0241630. eCollection 2020.
6
Prediction of Postoperative Intraocular Lens Position with Angle-to-Angle Depth Using Anterior Segment Optical Coherence Tomography.
Ophthalmology. 2016 Dec;123(12):2474-2480. doi: 10.1016/j.ophtha.2016.09.005. Epub 2016 Oct 18.
7
Improved prediction of intraocular lens power using partial coherence interferometry.
J Cataract Refract Surg. 2001 Jun;27(6):861-7. doi: 10.1016/s0886-3350(00)00699-4.
8
The effect of ocular biometric factors on the accuracy of various IOL power calculation formulas.
BMC Ophthalmol. 2017 May 2;17(1):62. doi: 10.1186/s12886-017-0454-y.
9
Effect of anterior chamber depth on the choice of intraocular lens calculation formula in patients with normal axial length.
Middle East Afr J Ophthalmol. 2014 Oct-Dec;21(4):307-11. doi: 10.4103/0974-9233.142266.

引用本文的文献

1
CatSkill: Artificial Intelligence-Based Metrics for the Assessment of Surgical Skill Level from Intraoperative Cataract Surgery Video Recordings.
Ophthalmol Sci. 2025 Mar 14;5(4):100764. doi: 10.1016/j.xops.2025.100764. eCollection 2025 Jul-Aug.
2
Incidence of Acute Cystoid Macular Edema after Starting a Prostaglandin Analog Compared with Other Classes of Glaucoma Medications.
Ophthalmol Glaucoma. 2025 Jan-Feb;8(1):4-11. doi: 10.1016/j.ogla.2024.07.010. Epub 2024 Aug 8.
3
Using Natural Language Processing to Identify Different Lens Pathology in Electronic Health Records.
Am J Ophthalmol. 2024 Jun;262:153-160. doi: 10.1016/j.ajo.2024.01.030. Epub 2024 Feb 1.
4
Research progress on prediction of postoperative intraocular lens position.
Indian J Ophthalmol. 2024 Feb 1;72(Suppl 2):S176-S182. doi: 10.4103/IJO.IJO_1839_23. Epub 2024 Jan 25.
6
Lessons From The Glaucoma Foundation Think Tank 2023: A Patient-Centric Approach to Glaucoma.
J Glaucoma. 2024 Mar 1;33(3):e1-e14. doi: 10.1097/IJG.0000000000002353. Epub 2023 Dec 21.
7
Radiomics Analysis of Breast Lesions in Combination with Coronal Plane of ABVS and Strain Elastography.
Breast Cancer (Dove Med Press). 2023 May 26;15:381-390. doi: 10.2147/BCTT.S410356. eCollection 2023.
8
MAEPI and CIR: New Metrics for Robust Evaluation of the Prediction Performance of AI-Based IOL Formulas.
Transl Vis Sci Technol. 2023 Mar 1;12(3):29. doi: 10.1167/tvst.12.3.29.
9
An explainable artificial intelligence system for diagnosing infection under endoscopy: a case-control study.
Therap Adv Gastroenterol. 2023 Mar 3;16:17562848231155023. doi: 10.1177/17562848231155023. eCollection 2023.
10
Identification of essential tremor based on resting-state functional connectivity.
Hum Brain Mapp. 2023 Mar;44(4):1407-1416. doi: 10.1002/hbm.26124. Epub 2022 Nov 3.

本文引用的文献

1
Prediction of Effective Lens Position Using Multiobjective Evolutionary Algorithm.
Transl Vis Sci Technol. 2019 Jun 28;8(3):64. doi: 10.1167/tvst.8.3.64. eCollection 2019 May.
2
Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes.
J Cataract Refract Surg. 2017 Aug;43(8):999-1002. doi: 10.1016/j.jcrs.2017.08.003.
3
Effect of Gender and Race on Ocular Biometry.
Int Ophthalmol Clin. 2017 Summer;57(3):137-142. doi: 10.1097/IIO.0000000000000180.
4
Clinical and biometric determinants of actual lens position after cataract surgery.
J Cataract Refract Surg. 2017 Feb;43(2):195-200. doi: 10.1016/j.jcrs.2016.11.043.
5
Prediction of the true IOL position.
Br J Ophthalmol. 2017 Oct;101(10):1440-1446. doi: 10.1136/bjophthalmol-2016-309543. Epub 2017 Feb 22.
6
Intraocular lens power formula accuracy: Comparison of 7 formulas.
J Cataract Refract Surg. 2016 Oct;42(10):1490-1500. doi: 10.1016/j.jcrs.2016.07.021.
7
Prediction of Postoperative Intraocular Lens Position with Angle-to-Angle Depth Using Anterior Segment Optical Coherence Tomography.
Ophthalmology. 2016 Dec;123(12):2474-2480. doi: 10.1016/j.ophtha.2016.09.005. Epub 2016 Oct 18.
8
Gender differences in biometry prediction error and intra-ocular lens power calculation formula.
Acta Ophthalmol. 2014 Dec;92(8):759-63. doi: 10.1111/aos.12475. Epub 2014 Jun 15.
9
Estimation of effective lens position using a method independent of preoperative keratometry readings.
J Cataract Refract Surg. 2011 Mar;37(3):506-12. doi: 10.1016/j.jcrs.2010.09.027.
10
Sources of error in intraocular lens power calculation.
J Cataract Refract Surg. 2008 Mar;34(3):368-76. doi: 10.1016/j.jcrs.2007.10.031.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验