Suppr超能文献

将脑回叶片中的白质模拟为连续的向量场。

Modelling white matter in gyral blades as a continuous vector field.

机构信息

Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK.

Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK.

出版信息

Neuroimage. 2021 Feb 15;227:117693. doi: 10.1016/j.neuroimage.2020.117693. Epub 2020 Dec 30.

Abstract

Many brain imaging studies aim to measure structural connectivity with diffusion tractography. However, biases in tractography data, particularly near the boundary between white matter and cortical grey matter can limit the accuracy of such studies. When seeding from the white matter, streamlines tend to travel parallel to the convoluted cortical surface, largely avoiding sulcal fundi and terminating preferentially on gyral crowns. When seeding from the cortical grey matter, streamlines generally run near the cortical surface until reaching deep white matter. These so-called "gyral biases" limit the accuracy and effective resolution of cortical structural connectivity profiles estimated by tractography algorithms, and they do not reflect the expected distributions of axonal densities seen in invasive tracer studies or stains of myelinated fibres. We propose an algorithm that concurrently models fibre density and orientation using a divergence-free vector field within gyral blades to encourage an anatomically-justified streamline density distribution along the cortical white/grey-matter boundary while maintaining alignment with the diffusion MRI estimated fibre orientations. Using in vivo data from the Human Connectome Project, we show that this algorithm reduces tractography biases. We compare the structural connectomes to functional connectomes from resting-state fMRI, showing that our model improves cross-modal agreement. Finally, we find that after parcellation the changes in the structural connectome are very minor with slightly improved interhemispheric connections (i.e, more homotopic connectivity) and slightly worse intrahemispheric connections when compared to tracers.

摘要

许多脑成像研究旨在通过扩散轨迹测量结构连接。然而,轨迹数据中的偏差,特别是在白质和皮质灰质边界附近,可能会限制此类研究的准确性。当从白质开始播种时,轨迹线倾向于与脑回的卷曲表面平行,从而在很大程度上避免了脑沟底部,并优先终止于脑回顶部。当从皮质灰质开始播种时,轨迹线通常在皮质表面附近运行,直到到达深部白质。这些所谓的“脑回偏差”限制了基于轨迹算法估计的皮质结构连接谱的准确性和有效分辨率,并且它们不能反映在侵入性示踪剂研究或髓鞘纤维染色中观察到的轴突密度的预期分布。我们提出了一种算法,该算法使用回旋叶片内的无散向量场同时对纤维密度和方向进行建模,以鼓励在皮质白质/灰质边界处沿具有解剖学意义的轨迹线密度分布,同时保持与扩散 MRI 估计的纤维方向的一致性。使用来自人类连接组计划的体内数据,我们表明该算法减少了轨迹偏差。我们将结构连接组与静息状态 fMRI 的功能连接组进行比较,表明我们的模型提高了跨模态一致性。最后,我们发现,与示踪剂相比,经过分割后,结构连接组的变化非常小,而半球间连接略有改善(即,同型连接性增加),半球内连接略有恶化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f229/7610793/ce9c561d2e6e/EMS123952-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验