Suppr超能文献

HepaRG 细胞在 GelMa 中的 3D 培养及其在多细胞肝模型生物打印中的应用。

3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model.

机构信息

Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France.

Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé́, Environnement et Travail) - UMR_S, 1085, Rennes, France.

出版信息

Biomaterials. 2021 Feb;269:120611. doi: 10.1016/j.biomaterials.2020.120611. Epub 2020 Dec 16.

Abstract

Bioprinting is an emergent technology that has already demonstrated the capacity to create complex and/or vascularized multicellular structures with defined and organized architectures, in a reproducible and high throughput way. Here, we present the implementation of a complex liver model by the development of a three-dimensional extrusion bioprinting process, including parameters for matrix polymerization of methacrylated gelatin, using two hepatic cell lines, Huh7 and HepaRG. The printed structures exhibited long-term viability (28 days), proliferative ability, a relevant hepatocyte phenotype and functions equivalent to or better than those of their 2D counterparts using standard DMSO treatment. This work served as a basis for the bioprinting of complex multicellular models associating the hepatic parenchymal cells, HepaRG, with stellate cells (LX-2) and endothelial cells (HUVECs), able of colonizing the surface of the structure and thus recreating a pseudo endothelial barrier. When bioprinted in 3D monocultures, LX-2 expression was modulated by TGFβ-1 toward the induction of myofibroblastic genes such as ACTA2 and COL1A1. In 3D multicellular bioprinted structures comprising HepaRG, LX-2 and endothelial cells, we evidenced fibrillar collagen deposition, which is never observed in monocultures of either HepaRG or LX-2 alone. These observations indicate that a precise control of cellular communication is required to recapitulate key steps of fibrogenesis. Bioprinted 3D co-cultures therefore open up new perspectives in studying the molecular and cellular basis of fibrosis development and provide better access to potential inducers and inhibitors of collagen expression and deposition.

摘要

生物打印是一种新兴技术,已经证明能够以可重复和高通量的方式创建具有定义和组织架构的复杂和/或血管化多细胞结构。在这里,我们通过开发三维挤出式生物打印工艺来展示复杂肝脏模型的实现,该工艺包括使用两种肝细胞系 Huh7 和 HepaRG 对甲基丙烯酰化明胶进行基质聚合的参数。打印结构表现出长期的生存能力(28 天)、增殖能力、相关的肝细胞表型和功能,与使用标准 DMSO 处理的 2D 对应物相当或更好。这项工作为复杂多细胞模型的生物打印奠定了基础,将肝实质细胞 HepaRG 与星状细胞(LX-2)和内皮细胞(HUVEC)结合在一起,能够在结构表面定植并因此重建伪内皮屏障。当在 3D 单核培养物中进行生物打印时,TGFβ-1 可调节 LX-2 的表达,诱导 ACTA2 和 COL1A1 等肌成纤维基因的表达。在包含 HepaRG、LX-2 和内皮细胞的 3D 多细胞生物打印结构中,我们观察到纤维状胶原蛋白的沉积,这在 HepaRG 或 LX-2 单独的单核培养物中从未观察到。这些观察结果表明,需要精确控制细胞通讯以重现纤维化发生的关键步骤。因此,生物打印的 3D 共培养物为研究纤维化发展的分子和细胞基础开辟了新的前景,并为潜在的胶原蛋白表达和沉积诱导剂和抑制剂提供了更好的研究途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验