Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan.
School of Chemical Sciences, National Institute of Science Education and Research Bhubaneswar, Khurda, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India.
Eur J Pharmacol. 2021 Mar 5;894:173836. doi: 10.1016/j.ejphar.2020.173836. Epub 2020 Dec 31.
The COVID-19 pandemic has spread rapidly and poses an unprecedented threat to the global economy and human health. Broad-spectrum antivirals are currently being administered to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). China's prevention and treatment guidelines suggest the use of an anti-influenza drug, arbidol, for the clinical treatment of COVID-19. Reports indicate that arbidol could neutralize SARS-CoV-2. Monotherapy with arbidol is superior to lopinavir-ritonavir or favipiravir for treating COVID-19. In SARS-CoV-2 infection, arbidol acts by interfering with viral binding to host cells. However, the detailed mechanism by which arbidol induces the inhibition of SARS-CoV-2 is not known. Here, we present atomistic insights into the mechanism underlying membrane fusion inhibition of SARS-CoV-2 by arbidol. Molecular dynamics (MD) simulation-based analyses demonstrate that arbidol binds and stabilizes at the receptor-binding domain (RBD)/ACE2 interface with a high affinity. It forms stronger intermolecular interactions with the RBD than ACE2. Analyses of the detailed decomposition of energy components and binding affinities revealed a substantial increase in the affinity between the RBD and ACE2 in the arbidol-bound RBD/ACE2 complex, suggesting that arbidol generates favorable interactions between them. Based on our MD simulation results, we propose that the binding of arbidol induces structural rigidity in the viral glycoprotein, thus restricting the conformational rearrangements associated with membrane fusion and virus entry. Furthermore, key residues of the RBD and ACE2 that interact with arbidol were identified, opening the door for developing therapeutic strategies and higher-efficacy arbidol derivatives or lead drug candidates.
新型冠状病毒肺炎疫情在全球迅速蔓延,对全球经济和人类健康构成前所未有的威胁。广谱抗病毒药物目前被用于治疗严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)。中国的防治指南建议使用抗流感药物利巴韦林治疗 COVID-19。有报道称利巴韦林可以中和 SARS-CoV-2。利巴韦林单药治疗 COVID-19优于洛匹那韦-利托那韦或法匹拉韦。在 SARS-CoV-2 感染中,利巴韦林通过干扰病毒与宿主细胞的结合而发挥作用。然而,利巴韦林诱导 SARS-CoV-2 抑制的详细机制尚不清楚。在这里,我们提出了利巴韦林抑制 SARS-CoV-2 膜融合的机制的原子水平见解。基于分子动力学(MD)模拟的分析表明,利巴韦林以高亲和力结合并稳定在受体结合域(RBD)/ACE2 界面。它与 RBD 形成比 ACE2 更强的分子间相互作用。对能量组成部分和结合亲和力的详细分解分析表明,利巴韦林结合的 RBD/ACE2 复合物中 RBD 和 ACE2 之间的亲和力显著增加,表明利巴韦林在它们之间产生了有利的相互作用。基于我们的 MD 模拟结果,我们提出利巴韦林的结合诱导病毒糖蛋白结构刚性,从而限制与膜融合和病毒进入相关的构象重排。此外,还确定了与利巴韦林相互作用的 RBD 和 ACE2 的关键残基,为开发治疗策略和更高疗效的利巴韦林衍生物或先导药物候选物开辟了道路。