Suppr超能文献

CNFE-SE:一种结合基于复杂网络的特征工程和堆叠集成的新方法,用于预测宫腔内人工授精的成功率和对特征进行排序。

CNFE-SE: a novel approach combining complex network-based feature engineering and stacked ensemble to predict the success of intrauterine insemination and ranking the features.

机构信息

School of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran.

Department of Genetics At Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.

出版信息

BMC Med Inform Decis Mak. 2021 Jan 2;21(1):1. doi: 10.1186/s12911-020-01362-0.

Abstract

BACKGROUND

Intrauterine Insemination (IUI) outcome prediction is a challenging issue which the assisted reproductive technology (ART) practitioners are dealing with. Predicting the success or failure of IUI based on the couples' features can assist the physicians to make the appropriate decision for suggesting IUI to the couples or not and/or continuing the treatment or not for them. Many previous studies have been focused on predicting the in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) outcome using machine learning algorithms. But, to the best of our knowledge, a few studies have been focused on predicting the outcome of IUI. The main aim of this study is to propose an automatic classification and feature scoring method to predict intrauterine insemination (IUI) outcome and ranking the most significant features.

METHODS

For this purpose, a novel approach combining complex network-based feature engineering and stacked ensemble (CNFE-SE) is proposed. Three complex networks are extracted considering the patients' data similarities. The feature engineering step is performed on the complex networks. The original feature set and/or the features engineered are fed to the proposed stacked ensemble to classify and predict IUI outcome for couples per IUI treatment cycle. Our study is a retrospective study of a 5-year couples' data undergoing IUI. Data is collected from Reproductive Biomedicine Research Center, Royan Institute describing 11,255 IUI treatment cycles for 8,360 couples. Our dataset includes the couples' demographic characteristics, historical data about the patients' diseases, the clinical diagnosis, the treatment plans and the prescribed drugs during the cycles, semen quality, laboratory tests and the clinical pregnancy outcome.

RESULTS

Experimental results show that the proposed method outperforms the compared methods with Area under receiver operating characteristics curve (AUC) of 0.84 ± 0.01, sensitivity of 0.79 ± 0.01, specificity of 0.91 ± 0.01, and accuracy of 0.85 ± 0.01 for the prediction of IUI outcome.

CONCLUSIONS

The most important predictors for predicting IUI outcome are semen parameters (sperm motility and concentration) as well as female body mass index (BMI).

摘要

背景

宫腔内人工授精(IUI)的结局预测是辅助生殖技术(ART)从业者面临的一个具有挑战性的问题。根据夫妇的特征预测 IUI 的成功或失败,可以帮助医生决定是否向夫妇建议进行 IUI 治疗,以及是否继续为他们进行治疗。许多先前的研究都集中在使用机器学习算法预测体外受精(IVF)和胞浆内精子注射(ICSI)的结局。但是,据我们所知,很少有研究集中在预测 IUI 的结局上。本研究的主要目的是提出一种自动分类和特征评分方法,以预测宫腔内人工授精(IUI)的结局,并对最重要的特征进行排名。

方法

为此,提出了一种结合复杂网络特征工程和堆叠集成(CNFE-SE)的新方法。考虑到患者数据的相似性,提取了三个复杂网络。在复杂网络上进行特征工程。将原始特征集和/或经过特征工程处理的特征集输入到所提出的堆叠集成中,以对每一个 IUI 治疗周期的夫妇进行分类和预测 IUI 结局。我们的研究是对 5 年的夫妇进行 IUI 的回顾性研究。数据来自 Royan 研究所的生殖生物医学研究中心,描述了 8360 对夫妇的 11255 个 IUI 治疗周期。我们的数据集包括夫妇的人口统计学特征、患者疾病的历史数据、临床诊断、治疗计划和周期中规定的药物、精液质量、实验室检查和临床妊娠结局。

结果

实验结果表明,所提出的方法在预测 IUI 结局方面优于比较方法,其接收者操作特征曲线下面积(AUC)为 0.84±0.01,灵敏度为 0.79±0.01,特异性为 0.91±0.01,准确性为 0.85±0.01。

结论

预测 IUI 结局的最重要预测因素是精液参数(精子活力和浓度)以及女性体重指数(BMI)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17b7/7778826/46623a8c9328/12911_2020_1362_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验