Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany 10-14, Ed. C, 08019 Barcelona, Spain.
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain.
J Control Release. 2021 Feb 10;330:669-683. doi: 10.1016/j.jconrel.2020.12.049. Epub 2020 Dec 31.
We examine different approaches for the controlled release of L-lactate, which is a signaling molecule that participates in tissue remodeling and regeneration, such as cardiac and muscle tissue. Robust, flexible, and self-supported 3-layers films made of two spin-coated poly(lactic acid) (PLA) layers separated by an electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) layer, are used as loading and delivery systems. Films with outer layers prepared using homochiral PLA and with nanoperforations of diameter 146 ± 70 experience more bulk erosion, which also contributes to the release of L-lactic acid, than those obtained using heterochiral PLA and with nanoperforations of diameter 66 ± 24. Moreover, the release of L-lactic acid as degradation product is accelerated by applying biphasic electrical pulses. The four approaches used for loading extra L-lactate in the 3-layered films were: incorporation of L-lactate at the intermediate PEDOT layer as primary dopant agent using (1) organic or (2) basic water solutions as reaction media; (3) substitution at the PEDOT layer of the ClO dopant by L-lactate using de-doping and re-doping processes; and (4) loading of L-lactate at the outer PLA layers during the spin-coating process. Electrical stimuli were applied considering biphasic voltage pulses and constant voltages (both negative and positive). Results indicate that the approach used to load the L-lactate has a very significant influence in the release regulation process, affecting the concentration of released L-lactate up to two orders of magnitude. Among the tested approaches, the one based on the utilization of the outer layers for loading, approach (4), can be proposed for situations requiring prolonged and sustained L-lactate release over time. The biocompatibility and suitability of the engineered films for cardiac tissue engineering has also been confirmed using cardiac cells.
我们研究了不同的方法来控制 L-乳酸的释放,L-乳酸是一种参与组织重塑和再生的信号分子,如心脏和肌肉组织。我们使用由两层旋涂聚乳酸(PLA)层和一层电聚合聚 3,4-亚乙基二氧噻吩(PEDOT)层组成的坚固、灵活和自支撑的 3 层膜作为负载和输送系统。具有外层由手性 PLA 制备且纳米孔直径为 146±70nm 的膜比由外消旋 PLA 制备且纳米孔直径为 66±24nm 的膜经历更多的整体侵蚀,这也有助于 L-乳酸的释放。此外,通过施加双相电脉冲加速 L-乳酸作为降解产物的释放。在 3 层膜中加载额外 L-乳酸的四种方法是:将 L-乳酸作为初级掺杂剂掺入中间 PEDOT 层中,使用(1)有机或(2)碱性水溶液作为反应介质;(3)通过脱掺杂和再掺杂过程将 PEDOT 层中的 ClO 掺杂剂取代为 L-乳酸;以及(4)在旋涂过程中在外层 PLA 层加载 L-乳酸。考虑到双相电压脉冲和恒压(负和正)施加电刺激。结果表明,加载 L-乳酸的方法对释放调节过程有非常显著的影响,影响释放的 L-乳酸浓度高达两个数量级。在所测试的方法中,基于利用外层进行加载的方法(4),可以在需要长时间持续释放 L-乳酸的情况下提出。使用心脏细胞还证实了工程膜的生物相容性和适用于心脏组织工程。