Suppr超能文献

通过掺杂诱导晶格应变、带隙工程和活性晶面设计实现MoS作为析氢电催化剂的活化策略

Activation Strategy of MoS as HER Electrocatalyst through Doping-Induced Lattice Strain, Band Gap Engineering, and Active Crystal Plane Design.

作者信息

Bolar Saikat, Shit Subhasis, Murmu Naresh Chandra, Samanta Pranab, Kuila Tapas

机构信息

Surface Engineering & Tribology Division, Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute, Durgapur 713209, India.

Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

出版信息

ACS Appl Mater Interfaces. 2021 Jan 13;13(1):765-780. doi: 10.1021/acsami.0c20500. Epub 2021 Jan 4.

Abstract

Doping engineering emerges as a contemporary technique to investigate the catalytic performance of MoS. Cation and anion co-doping appears as an advanced route toward electrocatalytic hydrogen evolution reaction (HER). V and N as dopants in MoS (VNMS) build up a strain inside the crystal structure and narrow down the optical band gaps manifesting the shifting of the absorbance band toward lower energy and improved catalytic performance. FE-SEM, HR-TEM, and XRD analysis confirmed that V and N doping decreases agglomeration possibility, particle size, developed strain, and crystal defects during crystal growth. Frequency shift and peak broadening in Raman spectra confirmed the doping induced strain generation in MoS leading to the modification of acidic and alkaline HER (51 and 110 mV @ 10 mAcm, respectively) performance. The improved donor density in VNMS was confirmed by the Mott-Schottky analysis. Enhanced electrical conductivity and optimized electronic structures facilities H* adsorption/desorption in the catalytically active (001) plane of cation and anion co-doped MoS.

摘要

掺杂工程作为一种研究MoS催化性能的当代技术应运而生。阳离子和阴离子共掺杂是实现电催化析氢反应(HER)的一种先进途径。V和N作为MoS(VNMS)中的掺杂剂,在晶体结构内部形成应变并缩小光学带隙,表现为吸收带向低能量方向移动以及催化性能提高。场发射扫描电子显微镜(FE-SEM)、高分辨率透射电子显微镜(HR-TEM)和X射线衍射(XRD)分析证实,V和N掺杂降低了晶体生长过程中的团聚可能性、粒径、产生的应变和晶体缺陷。拉曼光谱中的频移和峰展宽证实了MoS中掺杂诱导的应变产生,从而导致酸性和碱性HER性能的改变(分别在10 mAcm时为51和110 mV)。莫特-肖特基分析证实了VNMS中施主密度的提高。阳离子和阴离子共掺杂的MoS催化活性(001)面上增强的电导率和优化的电子结构促进了H*的吸附/脱附。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验