文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

活性髓过氧化物酶靶向纳米颗粒对易损性动脉粥样硬化斑块的高灵敏度磁粒子成像。

Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles.

机构信息

Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, 100853, China.

Department of Cardiology, the Sixth Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.

出版信息

Theranostics. 2021 Jan 1;11(2):506-521. doi: 10.7150/thno.49812. eCollection 2021.


DOI:10.7150/thno.49812
PMID:33391489
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7738857/
Abstract

Inflammation is a pivotal driver of atherosclerotic plaque progression and rupture and is a target for identifying vulnerable plaques. However, challenges arise with the current imaging modalities for differentiating vulnerable atherosclerotic plaques from stable plaques due to their low specificity and sensitivity. Herein, we aimed to develop a novel multimodal imaging platform that specifically targets and identifies high-risk plaques by detecting active myeloperoxidase (MPO), a potential inflammatory marker of vulnerable atherosclerotic plaque. A novel multimodal imaging agent, 5-HT-FeO-Cy7 nanoparticles (5HFeC NPs), used for active MPO targeting, was designed by conjugating superparamagnetic iron oxide nanoparticles (SPIONs) with 5-hydroxytryptamine and cyanine 7 N-hydroxysuccinimide ester. The specificity and sensitivity of 5HFeC NPs were evaluated using magnetic particle imaging (MPI), fluorescence imaging (FLI), and computed tomographic angiography (CTA) in an ApoE atherosclerosis mouse model. Treatment with 4-ABAH, an MPO inhibitor, was used to assess the monitoring ability of 5HFeC NPs. 5HFeC NPs can sensitively differentiate and accurately localize vulnerable atherosclerotic plaques in ApoE mice MPI/FLI/CTA. High MPI and FLI signals were observed in atherosclerotic plaques within the abdominal aorta, which were histologically confirmed by multiple high-risk features of macrophage infiltration, neovascularization, and microcalcification. Inhibition of active MPO reduced accumulation of 5HFeC NPs in the abdominal aorta. Accumulation of 5HFeC NPs in plaques enabled quantitative evaluation of the severity of inflammation and monitoring of MPO activity. This multimodal MPI approach revealed that active MPO-targeted nanoparticles might serve as a method for detecting vulnerable atherosclerotic plaques and monitoring MPO activity.

摘要

炎症是动脉粥样硬化斑块进展和破裂的关键驱动因素,也是识别易损斑块的靶点。然而,由于目前的成像方式特异性和敏感性低,在区分易损性动脉粥样硬化斑块和稳定性斑块方面存在挑战。在此,我们旨在开发一种新的多模态成像平台,通过检测活性髓过氧化物酶(MPO),特异性地识别和鉴定高危斑块,MPO 是易损性动脉粥样硬化斑块的一个潜在炎症标志物。设计了一种新的多模态成像剂 5-HT-FeO-Cy7 纳米粒子(5HFeC NPs),通过将超顺磁性氧化铁纳米粒子(SPIONs)与 5-羟色胺和 Cy7 N-羟基琥珀酰亚胺酯缀合,用于主动 MPO 靶向。在 ApoE 动脉粥样硬化小鼠模型中,通过磁共振粒子成像(MPI)、荧光成像(FLI)和计算机断层血管造影(CTA)评估 5HFeC NPs 的特异性和敏感性。用 MPO 抑制剂 4-ABAH 处理来评估 5HFeC NPs 的监测能力。5HFeC NPs 可以在 ApoE 小鼠的 MPI/FLI/CTA 中灵敏地区分和准确定位易损性动脉粥样硬化斑块。在腹主动脉内的动脉粥样硬化斑块中观察到高 MPI 和 FLI 信号,这在组织学上通过巨噬细胞浸润、新生血管形成和微钙化等多种高危特征得到证实。活性 MPO 的抑制减少了 5HFeC NPs 在腹主动脉中的积累。5HFeC NPs 在斑块中的积累使炎症严重程度的定量评估和 MPO 活性的监测成为可能。这种多模态 MPI 方法表明,主动 MPO 靶向纳米颗粒可能成为检测易损性动脉粥样硬化斑块和监测 MPO 活性的一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/6e7efef20010/thnov11p0506g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/7e01b232cf8b/thnov11p0506g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/75e0ce25e12f/thnov11p0506g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/16fa2961ea9e/thnov11p0506g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/0985d6d10676/thnov11p0506g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/663df7ad720e/thnov11p0506g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/6e7efef20010/thnov11p0506g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/7e01b232cf8b/thnov11p0506g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/75e0ce25e12f/thnov11p0506g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/16fa2961ea9e/thnov11p0506g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/0985d6d10676/thnov11p0506g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/663df7ad720e/thnov11p0506g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e13/7738857/6e7efef20010/thnov11p0506g006.jpg

相似文献

[1]
Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles.

Theranostics. 2021

[2]
CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of vulnerable atherosclerotic plaques.

Atherosclerosis. 2023-3

[3]
Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.

Nanotheranostics. 2020

[4]
Improved in vivo detection of atherosclerotic plaques with a tissue factor-targeting magnetic nanoprobe.

Acta Biomater. 2019-4-4

[5]
Synthesis of acid-stabilized iron oxide nanoparticles and comparison for targeting atherosclerotic plaques: evaluation by MRI, quantitative MPS, and TEM alternative to ambiguous Prussian blue iron staining.

Nanomedicine. 2015-7

[6]
Myeloperoxidase is a potential molecular imaging and therapeutic target for the identification and stabilization of high-risk atherosclerotic plaque.

Eur Heart J. 2018-9-14

[7]
Ultrasound/Optical Dual-Modality Imaging for Evaluation of Vulnerable Atherosclerotic Plaques with Osteopontin Targeted Nanoparticles.

Macromol Biosci. 2019-12-29

[8]
Magnetic mesoporous silica nanoparticles-aided dual MR/NIRF imaging to identify macrophage enrichment in atherosclerotic plaques.

Nanomedicine. 2021-2

[9]
In vivo MR and Fluorescence Dual-modality Imaging of Atherosclerosis Characteristics in Mice Using Profilin-1 Targeted Magnetic Nanoparticles.

Theranostics. 2016-1-1

[10]
Accumulation of Iron Oxide-Based Contrast Agents in Rabbit Atherosclerotic Plaques in Relation to Plaque Age and Vulnerability Features.

Int J Nanomedicine. 2024

引用本文的文献

[1]
Bioengineering approaches to trained immunity: Physiologic targets and therapeutic strategies.

Elife. 2025-7-23

[2]
Biogenic α-FeO nanoparticles from Sorghum bicolor leaf extracts and assessment of the anticancer and antioxidant properties.

Discov Nano. 2025-7-15

[3]
Advances in magnetic particle imaging and perspectives on liver imaging.

ILIVER. 2022-11-8

[4]
Exploring the diagnostic potential: magnetic particle imaging for brain diseases.

Mil Med Res. 2025-4-27

[5]
Manganese therapy for dyslipidemia and plaque reversal in murine models.

Life Metab. 2023-10-26

[6]
Emerging nanoprobes for the features visualization of vulnerable atherosclerotic plaques.

Smart Med. 2024-12-3

[7]
In situ size amplification strategy reduces lymphatic clearance for enhanced arthritis therapy.

J Nanobiotechnology. 2024-12-18

[8]
Molecular imaging nanoprobes and their applications in atherosclerosis diagnosis.

Theranostics. 2024

[9]
Highly sensitive magnetic particle imaging of abdominal aortic aneurysm NETosis with anti-Ly6G iron oxide nanoparticles.

Cell Death Discov. 2024-9-5

[10]
Advancements in Iron Oxide Nanoparticles for Multimodal Imaging and Tumor Theranostics.

Curr Med Chem. 2025

本文引用的文献

[1]
Hybrid MPI-MRI System for Dual-Modal In Situ Cardiovascular Assessments of Real-Time 3D Blood Flow Quantification-A Pre-Clinical In Vivo Feasibility Investigation.

IEEE Trans Med Imaging. 2020-12

[2]
Vulnerable Plaque and Einstein's Definition of Insanity.

J Am Coll Cardiol. 2020-3-31

[3]
Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications.

Theranostics. 2020

[4]
Therapeutic ultrasound combined with microbubbles improves atherosclerotic plaque stability by selectively destroying the intraplaque neovasculature.

Theranostics. 2020

[5]
Sight and switch off: Nerve density visualization for interventions targeting nerves in prostate cancer.

Sci Adv. 2020-2-5

[6]
Ultrasound/Optical Dual-Modality Imaging for Evaluation of Vulnerable Atherosclerotic Plaques with Osteopontin Targeted Nanoparticles.

Macromol Biosci. 2019-12-29

[7]
In vivo alpha-V beta-3 integrin expression in human aortic atherosclerosis.

Heart. 2019-8-17

[8]
Noninvasive Imaging to Assess Atherosclerotic Plaque Composition and Disease Activity: Coronary and Carotid Applications.

JACC Cardiovasc Imaging. 2020-4

[9]
Human-sized magnetic particle imaging for brain applications.

Nat Commun. 2019-4-26

[10]
Superparamagnetic iron oxides as MPI tracers: A primer and review of early applications.

Adv Drug Deliv Rev. 2018-12-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索