Franke Jochen, Baxan Nicoleta, Lehr Heinrich, Heinen Ulrich, Reinartz Sebastian, Schnorr Jorg, Heidenreich Michael, Kiessling Fabian, Schulz Volkmar
IEEE Trans Med Imaging. 2020 Dec;39(12):4335-4345. doi: 10.1109/TMI.2020.3017160. Epub 2020 Nov 30.
Non-invasive quantification of functional parameters of the cardiovascular system, in particular the heart, remains very challenging with current imaging techniques. This aspect is mainly due to the fact, that the spatio-temporal resolution of current imaging methods, such as Magnetic Resonance Imaging (MRI) or Positron Emission Tomography (PET), does not offer the desired data repetition rates in the context of real-time data acquisition and thus, can cause artifacts and misinterpretations in accelerated data acquisition approaches. We present a fast non-invasive and quantitative dual-modal in situ cardiovascular assessment using a hybrid imaging system which combines the new imaging modality Magnetic Particle Imaging (MPI) and MRI. This pre-clinical hybrid imaging system provides either a 0.5 T homogeneous B field for MRI or a 2.2 T/m gradient field featuring a Field-Free-Point for MPI. A comprehensive coil system allows in both imaging modes for spatial encoding, signal excitation and reception. In this work, 3-dimensional anatomical information acquired with MRI is combined with in situ sequentially acquired time-resolved 3D (i.e. 3D + t) MPI bolus tracking of superparamagnetic iron oxide nanoparticles. MPI data were acquired during a 21 [Formula: see text] (40 μ mol(Fe)/kg) bolus tail vein injection under free-breathing with an ungated and non-triggered MPI scan with a repetition rate of 46 volumes per seconds. We successfully determined quantitative hemodynamics as 3D + t velocity vector estimations of a beating rat's heart by analyzing 3 seconds of 3D + t MPI image data. The used hybrid system allows for MR-based MPI Field-of-View planning and cardiac cross-sectional anatomy analysis, precise co-registration of dual-modal datasets, as well as for MPI-based hemodynamic functional analysis using an optical flow technique. We present the first in-vivo results of a new methodology, allowing for fast, non-invasive, quantitative and in situ hybrid cardiovascular assessment, showing its potential for future clinical applications.
利用当前的成像技术对心血管系统,尤其是心脏的功能参数进行无创量化仍然极具挑战性。这主要是因为,当前成像方法(如磁共振成像(MRI)或正电子发射断层扫描(PET))的时空分辨率在实时数据采集的情况下无法提供所需的数据重复率,因此,在加速数据采集方法中可能会导致伪影和误解。我们提出了一种使用混合成像系统的快速无创定量双模态原位心血管评估方法,该系统结合了新的成像模态磁粒子成像(MPI)和MRI。这种临床前混合成像系统为MRI提供0.5 T的均匀B场,为MPI提供具有无场点的2.2 T/m梯度场。一个综合线圈系统允许在两种成像模式下进行空间编码、信号激发和接收。在这项工作中,通过MRI获取的三维解剖信息与原位顺序获取的超顺磁性氧化铁纳米颗粒的时间分辨三维(即3D + t)MPI团注追踪相结合。在自由呼吸状态下,以每秒46帧的重复率进行非门控和非触发的MPI扫描,在21 [公式:见正文](40 μmol(Fe)/kg)团注尾静脉注射期间采集MPI数据。通过分析3秒的3D + t MPI图像数据,我们成功地将定量血流动力学确定为跳动大鼠心脏的3D + t速度矢量估计。所使用的混合系统允许基于MR的MPI视野规划和心脏横截面解剖分析、双模态数据集的精确配准,以及使用光流技术进行基于MPI的血流动力学功能分析。我们展示了一种新方法的首次体内结果,该方法允许进行快速、无创、定量和原位混合心血管评估,显示了其在未来临床应用中的潜力。
IEEE Trans Med Imaging. 2016-3-14
IEEE Trans Biomed Eng. 2024-10
Phys Med Biol. 2018-3-16
IEEE Trans Med Imaging. 2014-10
ACS Nano. 2017-10-4
Mater Today Phys. 2023-3
Npj Imaging. 2025-5-6
Front Physiol. 2022-7-1
Nanomaterials (Basel). 2022-5-21