Suppr超能文献

基于F-FDG PET的放射组学模型预测临床N0期实性肺腺癌的隐匿性淋巴结转移

F-FDG PET-based radiomics model for predicting occult lymph node metastasis in clinical N0 solid lung adenocarcinoma.

作者信息

Wang Lili, Li Tiancheng, Hong Junjie, Zhang Mingyue, Ouyang Mingli, Zheng Xiangwu, Tang Kun

机构信息

Department of PET/CT, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

PET Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Quant Imaging Med Surg. 2021 Jan;11(1):215-225. doi: 10.21037/qims-20-337.

Abstract

BACKGROUND

This study aimed to develop a preoperative positron emission tomography (PET)-based radiomics model for predicting occult lymph node metastasis (OLM) in clinical N0 (cN0) solid lung adenocarcinoma.

METHODS

The preoperative fluorine-18-fludeoxyglucose (F-FDG) PET images of 370 patients with cN0 lung adenocarcinoma confirmed by histopathological examination were retrospectively reviewed. Patients were divided into training and validation sets. Radiomics features and relevant data were extracted from PET images. A nomogram was developed in a training set via univariate and multivariate logistic analyses, and its performance was assessed by concordance-index (C-index), calibration curves, and decision curve analysis (DCA) in the training and validation sets.

RESULTS

The multivariate logistic regression analysis showed that only carcinoembryonic antigen (CEA), metabolic tumor volume (MTV), and the radiomics signature had statistically significant differences between patients with and without OLM (P<0.05). A nomogram was developed based on the logistic analyses, and its C-index was 0.769 in the training set and 0.768 in the validation set. The calibration curve demonstrated good consistency between the nomogram-predicted probability of OLM and the actual rate. The DCA also confirmed the clinical utility of the nomogram.

CONCLUSIONS

A PET/computed tomography (CT)-based radiomics model including CEA, MTV, and the radiomics signature was developed and demonstrated adequate predictive accuracy and clinical net benefit in the present study, and was conveniently used to facilitate the individualized preoperative prediction of OLM.

摘要

背景

本研究旨在开发一种基于术前正电子发射断层扫描(PET)的放射组学模型,用于预测临床N0(cN0)期实性肺腺癌的隐匿性淋巴结转移(OLM)。

方法

回顾性分析370例经组织病理学检查确诊为cN0期肺腺癌患者的术前氟-18-氟脱氧葡萄糖(F-FDG)PET图像。将患者分为训练集和验证集。从PET图像中提取放射组学特征和相关数据。通过单因素和多因素逻辑分析在训练集中建立列线图,并在训练集和验证集中通过一致性指数(C指数)、校准曲线和决策曲线分析(DCA)评估其性能。

结果

多因素逻辑回归分析显示,癌胚抗原(CEA)、代谢肿瘤体积(MTV)和放射组学特征在有和无OLM的患者之间差异有统计学意义(P<0.05)。基于逻辑分析建立了列线图,其在训练集中的C指数为0.769,在验证集中为0.768。校准曲线显示列线图预测的OLM概率与实际发生率之间具有良好的一致性。DCA也证实了列线图的临床实用性。

结论

本研究开发了一种基于PET/计算机断层扫描(CT)的放射组学模型,包括CEA、MTV和放射组学特征,在本研究中显示出足够的预测准确性和临床净效益,并且便于用于促进OLM的个体化术前预测。

相似文献

2
F-FDG PET/CT-based radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer.
Front Oncol. 2022 Aug 8;12:911168. doi: 10.3389/fonc.2022.911168. eCollection 2022.
5
F-FDG PET/CT radiomics nomogram for predicting occult lymph node metastasis of non-small cell lung cancer.
Front Oncol. 2022 Sep 28;12:974934. doi: 10.3389/fonc.2022.974934. eCollection 2022.
6
A new approach to predict lymph node metastasis in solid lung adenocarcinoma: a radiomics nomogram.
J Thorac Dis. 2018 Apr;10(Suppl 7):S807-S819. doi: 10.21037/jtd.2018.03.126.
7
8
A Radiomics Nomogram for Preoperative Prediction of Clinical Occult Lymph Node Metastasis in cT1-2N0M0 Solid Lung Adenocarcinoma.
Cancer Manag Res. 2021 Oct 28;13:8157-8167. doi: 10.2147/CMAR.S330824. eCollection 2021.
9
F-FDG PET/CT-based radiomics nomogram could predict bone marrow involvement in pediatric neuroblastoma.
Insights Imaging. 2022 Sep 4;13(1):144. doi: 10.1186/s13244-022-01283-8.
10
Diagnostic Value of F-FDG PET/CT-Based Radiomics Nomogram in Bone Marrow Involvement of Pediatric Neuroblastoma.
Acad Radiol. 2023 May;30(5):940-951. doi: 10.1016/j.acra.2022.08.021. Epub 2022 Sep 16.

引用本文的文献

2
LINC00894, YEATS2-AS1, and SUGP2 genes as novel biomarkers for N0 status of lung adenocarcinoma.
Sci Rep. 2025 Mar 27;15(1):10628. doi: 10.1038/s41598-024-84640-5.
5
Development and validation of [18 F]-PSMA-1007 PET-based radiomics model to predict biochemical recurrence-free survival following radical prostatectomy.
Eur J Nucl Med Mol Imaging. 2024 Jul;51(9):2806-2818. doi: 10.1007/s00259-024-06734-6. Epub 2024 May 1.
6
9
Diagnostic value of dynamic F-FDG PET/CT imaging in non-small cell lung cancer and FDG hypermetabolic lymph nodes.
Quant Imaging Med Surg. 2023 Apr 1;13(4):2556-2567. doi: 10.21037/qims-22-725. Epub 2023 Mar 13.

本文引用的文献

1
Radiomics prediction model for the improved diagnosis of clinically significant prostate cancer on biparametric MRI.
Quant Imaging Med Surg. 2020 Feb;10(2):368-379. doi: 10.21037/qims.2019.12.06.
3
CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer.
Eur Radiol. 2020 Feb;30(2):976-986. doi: 10.1007/s00330-019-06398-z. Epub 2019 Aug 29.
7
A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery.
Eur Radiol. 2019 Jul;29(7):3325-3337. doi: 10.1007/s00330-019-06056-4. Epub 2019 Apr 10.
8
CT-Based Radiomics Model for Predicting Brain Metastasis in Category T1 Lung Adenocarcinoma.
AJR Am J Roentgenol. 2019 Jul;213(1):134-139. doi: 10.2214/AJR.18.20591. Epub 2019 Apr 1.
9
A radiomics approach to predict lymph node metastasis and clinical outcome of intrahepatic cholangiocarcinoma.
Eur Radiol. 2019 Jul;29(7):3725-3735. doi: 10.1007/s00330-019-06142-7. Epub 2019 Mar 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验