Suppr超能文献

强度可调的粘弹性丝素蛋白水凝胶

Viscoelastic Silk Fibroin Hydrogels with Tunable Strength.

作者信息

Yao Danyu, Li Meiqi, Wang Ting, Sun Fangfang, Su Chang, Shi Tingchun

机构信息

School of Automation, Hangzhou Dianzi University, Hangzhou, 310018 Zhejiang, People's Republic of China.

The Children's Hospital of Medical College, Zhejiang University, Hangzhou, 310052 Zhejiang, People's Republic of China.

出版信息

ACS Biomater Sci Eng. 2021 Feb 8;7(2):636-647. doi: 10.1021/acsbiomaterials.0c01348. Epub 2021 Jan 4.

Abstract

Hydrogels are often used as synthetic extracellular matrices (ECMs) for biomedical applications. Natural ECMs are viscoelastic and exhibit partial stress relaxation. However, commonly used hydrogels are typically elastic. Hydrogels developed from ECM-based proteins are viscoelastic, but they often have weak mechanical properties. Here, biocompatible viscoelastic hydrogels with excellent mechanical performance are fabricated by an all aqueous process at body or room temperature. These hydrogels offer obvious stress relaxation and tunable mechanical properties and gelation kinetics. Their compressive modulus can be controlled between 2 kPa and 1.2 MPa, covering a significant portion of the properties of native tissues. Investigation of the gelation mechanism revealed that silk fibroin gelation is caused by the synergistic effects of hydrophobic interaction and hydrogen bonding between silk fibroin molecules. Newly formed crystals serve as the cross-link sites and form a network endowing the hydrogel with stable structure, and the flexible noncrystalline silk nanofibers connect disparate silk fibroin crystals, endowing hydrogels with viscoelastic properties. The all aqueous gelation process avoids complex chemical and physical treatments and is beneficial for encapsulating cells or biomolecules. Encapsulation of chondrocytes results in high initial survival rate (95% ± 1%). These silk fibroin-based viscoelastic hydrogels, combined with superior biocompatible and tunable mechanical properties, represent an exciting option for tissue engineering and regenerative medicine.

摘要

水凝胶常用于生物医学应用中的合成细胞外基质(ECM)。天然ECM具有粘弹性,并表现出部分应力松弛。然而,常用的水凝胶通常是弹性的。基于ECM的蛋白质开发的水凝胶具有粘弹性,但它们的机械性能往往较弱。在此,通过在体温或室温下的全水性过程制备了具有优异机械性能的生物相容性粘弹性水凝胶。这些水凝胶具有明显的应力松弛以及可调节的机械性能和凝胶化动力学。它们的压缩模量可以控制在2 kPa至1.2 MPa之间,涵盖了天然组织的很大一部分特性。对凝胶化机制的研究表明,丝素蛋白凝胶化是由丝素蛋白分子之间的疏水相互作用和氢键的协同作用引起的。新形成的晶体作为交联位点并形成赋予水凝胶稳定结构的网络,而柔性非晶态丝纳米纤维连接不同的丝素蛋白晶体,赋予水凝胶粘弹性。全水性凝胶化过程避免了复杂的化学和物理处理,有利于封装细胞或生物分子。软骨细胞的封装导致高初始存活率(95%±1%)。这些基于丝素蛋白的粘弹性水凝胶,结合卓越的生物相容性和可调节的机械性能,为组织工程和再生医学提供了一个令人兴奋的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验