Lv Cunjing, Hardt Steffen
Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, China.
Fachgebiet Nano- und Mikrofluidik, Fachbereich Maschinenbau, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
Soft Matter. 2021 Feb 25;17(7):1756-1772. doi: 10.1039/d0sm00346h.
In this paper, we systematically investigate the static wetting behavior of a liquid ring in a cylindrical capillary tube. We obtain analytical solutions of the axisymmetric Young-Laplace equation for arbitrary contact angles. We find that, for specific values of the contact angle and the volume of the liquid ring, two solutions of the Young-Laplace equation exist, but only the one with the lower value of the total interfacial energy corresponds to a stable configuration. Based on a numerical scheme determining configurations with a local minimum of the interfacial energy, we also discuss the stability limit between axisymmetric rings and non-axisymmetric configurations. Beyond the stable regime, a liquid plug or a sessile droplet exists instead of a liquid ring, depending on the values of the liquid volume and the contact angle. The stability limit is characterized by specific critical parameters such as the liquid volume, throat diameter, etc. The results are presented in terms of a map showing the different stable liquid morphologies that are obtained from an axisymmetric ring as base state.
在本文中,我们系统地研究了圆柱形毛细管中液环的静态润湿行为。我们得到了任意接触角下轴对称杨-拉普拉斯方程的解析解。我们发现,对于接触角和液环体积的特定值,杨-拉普拉斯方程存在两个解,但只有总界面能较低的那个解对应于稳定构型。基于一种确定具有界面能局部最小值构型的数值方案,我们还讨论了轴对称环与非轴对称构型之间的稳定性极限。在稳定区域之外,根据液体体积和接触角的值,会存在一个液塞或一个固着液滴,而不是液环。稳定性极限由特定的临界参数表征,如液体体积、喉部直径等。结果以一张图的形式呈现,该图展示了从轴对称环作为基态获得的不同稳定液体形态。