Suppr超能文献

基于结构的功能和相互作用预测揭示最小基因组中必需基因的功能及无标度蛋白质相互作用网络

Functions of Essential Genes and a Scale-Free Protein Interaction Network Revealed by Structure-Based Function and Interaction Prediction for a Minimal Genome.

作者信息

Zhang Chengxin, Zheng Wei, Cheng Micah, Omenn Gilbert S, Freddolino Peter L, Zhang Yang

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States.

Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States.

出版信息

J Proteome Res. 2021 Feb 5;20(2):1178-1189. doi: 10.1021/acs.jproteome.0c00359. Epub 2021 Jan 4.

Abstract

When the JCVI-syn3.0 genome was designed and implemented in 2016 as the minimal genome of a free-living organism, approximately one-third of the 438 protein-coding genes had no known function. Subsequent refinement into JCVI-syn3A led to inclusion of 16 additional protein-coding genes, including several unknown functions, resulting in an improved growth phenotype. Here, we seek to unveil the biological roles and protein-protein interaction (PPI) networks for these poorly characterized proteins using state-of-the-art deep learning contact-assisted structure prediction, followed by structure-based annotation of functions and PPI predictions. Our pipeline is able to confidently assign functions for many previously unannotated proteins such as putative vitamin transporters, which suggest the importance of nutrient uptake even in a minimized genome. Remarkably, despite the artificial selection of genes in the minimal syn3 genome, our reconstructed PPI network still shows a power law distribution of node degrees typical of naturally evolved bacterial PPI networks. Making use of our framework for combined structure/function/interaction modeling, we are able to identify both fundamental aspects of network biology that are retained in a minimal proteome and additional essential functions not yet recognized among the poorly annotated components of the syn3.0 and syn3A proteomes.

摘要

2016年,当JCVI-syn3.0基因组作为自由生活生物体的最小基因组被设计并实现时,438个蛋白质编码基因中约有三分之一的功能未知。随后对JCVI-syn3A进行的优化导致增加了16个额外的蛋白质编码基因,其中包括几个功能未知的基因,从而改善了生长表型。在这里,我们试图利用最先进的深度学习接触辅助结构预测,揭示这些特征不明确的蛋白质的生物学作用和蛋白质-蛋白质相互作用(PPI)网络,随后基于结构进行功能注释和PPI预测。我们的流程能够自信地为许多以前未注释的蛋白质分配功能,如假定的维生素转运蛋白,这表明即使在最小化的基因组中,营养物质摄取也很重要。值得注意的是,尽管在最小化的syn3基因组中进行了基因人工选择,但我们重建的PPI网络仍然显示出自然进化的细菌PPI网络典型的节点度幂律分布。利用我们的结构/功能/相互作用联合建模框架,我们能够识别在最小蛋白质组中保留的网络生物学基本方面,以及在syn3.0和syn3A蛋白质组注释不充分的成分中尚未识别的其他基本功能。

相似文献

2
Toward the Complete Functional Characterization of a Minimal Bacterial Proteome.
J Phys Chem B. 2022 Sep 15;126(36):6820-6834. doi: 10.1021/acs.jpcb.2c04188. Epub 2022 Sep 1.
3
Functional Annotation of Proteins Encoded by the Minimal Bacterial Genome Based on Secondary Structure Element Alignment.
J Proteome Res. 2018 Jul 6;17(7):2511-2520. doi: 10.1021/acs.jproteome.8b00262. Epub 2018 May 24.
4
Essential metabolism for a minimal cell.
Elife. 2019 Jan 18;8:e36842. doi: 10.7554/eLife.36842.
5
SynWiki: Functional annotation of the first artificial organism Mycoplasma mycoides JCVI-syn3A.
Protein Sci. 2022 Jan;31(1):54-62. doi: 10.1002/pro.4179. Epub 2021 Sep 20.
6
Genetic requirements for cell division in a genomically minimal cell.
Cell. 2021 Apr 29;184(9):2430-2440.e16. doi: 10.1016/j.cell.2021.03.008. Epub 2021 Mar 29.
7
Cellular mechanics during division of a genomically minimal cell.
Trends Cell Biol. 2022 Nov;32(11):900-907. doi: 10.1016/j.tcb.2022.06.009. Epub 2022 Jul 27.
8
Design and synthesis of a minimal bacterial genome.
Science. 2016 Mar 25;351(6280):aad6253. doi: 10.1126/science.aad6253.
9
Genome-scale metabolic modeling reveals key features of a minimal gene set.
Mol Syst Biol. 2021 Jul;17(7):e10099. doi: 10.15252/msb.202010099.
10
Minimal cells, maximal knowledge.
Elife. 2019 Mar 12;8:e45379. doi: 10.7554/eLife.45379.

引用本文的文献

1
Improving the Annotations of JCVI-Syn3a Proteins.
Methods Mol Biol. 2025;2867:153-168. doi: 10.1007/978-1-0716-4196-5_9.
2
Recent Progress of Protein Tertiary Structure Prediction.
Molecules. 2024 Feb 13;29(4):832. doi: 10.3390/molecules29040832.
3
Molecular investigation of TSHR gene in Bangladeshi congenital hypothyroid patients.
PLoS One. 2023 Aug 10;18(8):e0282553. doi: 10.1371/journal.pone.0282553. eCollection 2023.
4
Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review.
Molecules. 2023 Jul 2;28(13):5169. doi: 10.3390/molecules28135169.
5
Fast and accurate genome-wide predictions and structural modeling of protein-protein interactions using Galaxy.
BMC Bioinformatics. 2023 Jun 23;24(1):263. doi: 10.1186/s12859-023-05389-8.
6
Protein-protein interaction prediction with deep learning: A comprehensive review.
Comput Struct Biotechnol J. 2022 Sep 19;20:5316-5341. doi: 10.1016/j.csbj.2022.08.070. eCollection 2022.
7
Bacterial genome reductions: Tools, applications, and challenges.
Front Genome Ed. 2022 Aug 31;4:957289. doi: 10.3389/fgeed.2022.957289. eCollection 2022.
8
Toward the Complete Functional Characterization of a Minimal Bacterial Proteome.
J Phys Chem B. 2022 Sep 15;126(36):6820-6834. doi: 10.1021/acs.jpcb.2c04188. Epub 2022 Sep 1.
9
Data Incompleteness May form a Hard-to-Overcome Barrier to Decoding Life's Mechanism.
Biology (Basel). 2022 Aug 12;11(8):1208. doi: 10.3390/biology11081208.
10
I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction.
Nat Protoc. 2022 Oct;17(10):2326-2353. doi: 10.1038/s41596-022-00728-0. Epub 2022 Aug 5.

本文引用的文献

1
Integrating Multimeric Threading With High-throughput Experiments for Structural Interactome of Escherichia coli.
J Mol Biol. 2021 May 14;433(10):166944. doi: 10.1016/j.jmb.2021.166944. Epub 2021 Mar 16.
2
An emerging role for cyclic dinucleotide phosphodiesterase and nanoRNase activities in Mycoplasma bovis: Securing survival in cell culture.
PLoS Pathog. 2020 Jun 29;16(6):e1008661. doi: 10.1371/journal.ppat.1008661. eCollection 2020 Jun.
3
Detecting Gene Ontology misannotations using taxon-specific rate ratio comparisons.
Bioinformatics. 2020 Aug 15;36(16):4383-4388. doi: 10.1093/bioinformatics/btaa548.
7
I-TASSER gateway: A protein structure and function prediction server powered by XSEDE.
Future Gener Comput Syst. 2019 Oct;99:73-85. doi: 10.1016/j.future.2019.04.011. Epub 2019 Apr 9.
8
9
Deep-learning contact-map guided protein structure prediction in CASP13.
Proteins. 2019 Dec;87(12):1149-1164. doi: 10.1002/prot.25792. Epub 2019 Aug 14.
10
Environmental conditions shape the nature of a minimal bacterial genome.
Nat Commun. 2019 Jul 15;10(1):3100. doi: 10.1038/s41467-019-10837-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验