Suppr超能文献

利用串行深度卷积神经网络从 MRI 中提取进行性多灶性白质脑病病变和脑实质分割。

Progressive multifocal leukoencephalopathy lesion and brain parenchymal segmentation from MRI using serial deep convolutional neural networks.

机构信息

Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.

Section of Neural Function, National Institute of Mental Health, Bethesda, MD, USA.

出版信息

Neuroimage Clin. 2020;28:102499. doi: 10.1016/j.nicl.2020.102499. Epub 2020 Nov 11.

Abstract

Progressive multifocal leukoencephalopathy (PML) is a rare opportunistic brain infection caused by the JC virus and associated with substantial morbidity and mortality. Accurate MRI assessment of PML lesion burden and brain parenchymal atrophy is of decisive value in monitoring the disease course and response to therapy. However, there are currently no validated automatic methods for quantification of PML lesion burden or associated parenchymal volume loss. Furthermore, manual brain or lesion delineations can be tedious, require the use of valuable time resources by radiologists or trained experts, and are often subjective. In this work, we introduce JCnet (named after the causative viral agent), an end-to-end, fully automated method for brain parenchymal and lesion segmentation in PML using consecutive 3D patch-based convolutional neural networks. The network architecture consists of multi-view feature pyramid networks with hierarchical residual learning blocks containing embedded batch normalization and nonlinear activation functions. The feature maps across the bottom-up and top-down pathways of the feature pyramids are merged, and an output probability membership generated through convolutional pathways, thus rendering the method fully convolutional. Our results show that this approach outperforms and improves longitudinal consistency compared to conventional, state-of-the-art methods of healthy brain and multiple sclerosis lesion segmentation, utilized here as comparators given the lack of available methods validated for use in PML. The ability to produce robust and accurate automated measures of brain atrophy and lesion segmentation in PML is not only valuable clinically but holds promise toward including standardized quantitative MRI measures in clinical trials of targeted therapies. Code is available at: https://github.com/omarallouz/JCnet.

摘要

进行性多灶性白质脑病(PML)是一种由 JC 病毒引起的罕见机会性脑感染,与较高的发病率和死亡率相关。准确的 MRI 评估 PML 病变负担和脑实质萎缩对于监测疾病过程和治疗反应具有决定性价值。然而,目前尚无经过验证的自动方法可用于量化 PML 病变负担或相关实质体积损失。此外,手动进行脑或病变勾画可能很繁琐,需要放射科医生或训练有素的专家使用宝贵的时间资源,并且通常具有主观性。在这项工作中,我们引入了 JCnet(以致病病毒命名),这是一种使用连续 3D 补丁卷积神经网络对 PML 进行脑实质和病变分割的端到端全自动方法。该网络架构由多视图特征金字塔网络组成,其中包含具有嵌入式批量归一化和非线性激活功能的分层残差学习块。特征金字塔底部向上和顶部向下路径的特征图被合并,并通过卷积路径生成输出概率隶属度,从而使该方法完全成为卷积方法。我们的结果表明,与这里用作比较的传统、最先进的健康脑和多发性硬化病变分割方法相比,该方法在纵向一致性方面表现更好且有所改进,这是由于缺乏经过验证的可用于 PML 的方法。能够生成 PML 中脑萎缩和病变分割的稳健且准确的自动测量值不仅在临床上有价值,而且有望在针对靶向治疗的临床试验中纳入标准化的定量 MRI 测量值。代码可在:https://github.com/omarallouz/JCnet 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验