McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.
Department of Biomedical Engineering, McGill University, Montreal, Canada.
Hum Brain Mapp. 2020 Feb 1;41(2):309-327. doi: 10.1002/hbm.24803. Epub 2019 Oct 21.
Neuroanatomical segmentation in magnetic resonance imaging (MRI) of the brain is a prerequisite for quantitative volume, thickness, and shape measurements, as well as an important intermediate step in many preprocessing pipelines. This work introduces a new highly accurate and versatile method based on 3D convolutional neural networks for the automatic segmentation of neuroanatomy in T1-weighted MRI. In combination with a deep 3D fully convolutional architecture, efficient linear registration-derived spatial priors are used to incorporate additional spatial context into the network. An aggressive data augmentation scheme using random elastic deformations is also used to regularize the networks, allowing for excellent performance even in cases where only limited labeled training data are available. Applied to hippocampus segmentation in an elderly population (mean Dice coefficient = 92.1%) and subcortical segmentation in a healthy adult population (mean Dice coefficient = 89.5%), we demonstrate new state-of-the-art accuracies and a high robustness to outliers. Further validation on a multistructure segmentation task in a scan-rescan dataset demonstrates accuracy (mean Dice coefficient = 86.6%) similar to the scan-rescan reliability of expert manual segmentations (mean Dice coefficient = 86.9%), and improved reliability compared to both expert manual segmentations and automated segmentations using FIRST. Furthermore, our method maintains a highly competitive runtime performance (e.g., requiring only 10 s for left/right hippocampal segmentation in 1 × 1 × 1 mm MNI stereotaxic space), orders of magnitude faster than conventional multiatlas segmentation methods.
脑磁共振成像(MRI)的神经解剖分割是进行定量体积、厚度和形状测量的前提,也是许多预处理流水线的重要中间步骤。本研究提出了一种新的基于 3D 卷积神经网络的高度精确且通用的方法,用于自动分割 T1 加权 MRI 中的神经解剖结构。该方法结合了深度 3D 全卷积架构,使用高效的线性配准衍生空间先验知识将额外的空间上下文信息纳入网络。此外,还采用了激进的数据增强方案,利用随机弹性变形对网络进行正则化处理,从而使网络在仅有有限的标记训练数据的情况下也能获得出色的性能。我们将该方法应用于老年人海马体分割(平均 Dice 系数为 92.1%)和健康成年人亚皮质分割(平均 Dice 系数为 89.5%),证明了新方法具有很高的准确性和对异常值的鲁棒性。在扫描-重扫数据集的多结构分割任务上的进一步验证表明,该方法的准确性(平均 Dice 系数为 86.6%)与专家手动分割的扫描-重扫可靠性(平均 Dice 系数为 86.9%)相似,并且比专家手动分割和使用 FIRST 的自动分割的可靠性都有所提高。此外,该方法还具有很高的运行时性能(例如,在 1×1×1mm MNI 标准空间中,左右海马体的分割仅需 10 秒),比传统的多图谱分割方法快几个数量级。