文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于改进 YOLOv8 的轻量级玉米叶片检测与计数

Lightweight Corn Leaf Detection and Counting Using Improved YOLOv8.

机构信息

College of Information and Electrical Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China.

College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China.

出版信息

Sensors (Basel). 2024 Aug 15;24(16):5279. doi: 10.3390/s24165279.


DOI:10.3390/s24165279
PMID:39204973
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11359063/
Abstract

The number of maize leaves is an important indicator for assessing plant growth and regulating population structure. However, the traditional leaf counting method mainly relies on manual work, which is both time-consuming and straining, while the existing image processing methods have low accuracy and poor adaptability, making it difficult to meet the standards for practical application. To accurately detect the growth status of maize, an improved lightweight YOLOv8 maize leaf detection and counting method was proposed in this study. Firstly, the backbone of the YOLOv8 network is replaced using the StarNet network and the convolution and attention fusion module (CAFM) is introduced, which combines the local convolution and global attention mechanisms to enhance the ability of feature representation and fusion of information from different channels. Secondly, in the neck network part, the StarBlock module is used to improve the C2f module to capture more complex features while preserving the original feature information through jump connections to improve training stability and performance. Finally, a lightweight shared convolutional detection head (LSCD) is used to reduce repetitive computations and improve computational efficiency. The experimental results show that the precision, recall, and mAP50 of the improved model are 97.9%, 95.5%, and 97.5%, and the numbers of model parameters and model size are 1.8 M and 3.8 MB, which are reduced by 40.86% and 39.68% compared to YOLOv8. This study shows that the model improves the accuracy of maize leaf detection, assists breeders in making scientific decisions, provides a reference for the deployment and application of maize leaf number mobile end detection devices, and provides technical support for the high-quality assessment of maize growth.

摘要

玉米叶片数量是评估植物生长和调节群体结构的重要指标。然而,传统的叶片计数方法主要依赖于人工操作,既费时又费力,而现有的图像处理方法准确性低,适应性差,难以满足实际应用的标准。为了准确检测玉米的生长状况,本研究提出了一种改进的轻量级 YOLOv8 玉米叶片检测和计数方法。首先,用 StarNet 网络替换 YOLOv8 网络的骨干,引入卷积和注意力融合模块(CAFM),将局部卷积和全局注意力机制相结合,增强特征表示和融合不同通道信息的能力。其次,在颈部网络部分,使用 StarBlock 模块改进 C2f 模块,通过跳跃连接保留原始特征信息,同时捕捉更复杂的特征,提高训练稳定性和性能。最后,使用轻量级共享卷积检测头(LSCD)减少重复计算,提高计算效率。实验结果表明,改进后的模型的精度、召回率和 mAP50 分别为 97.9%、95.5%和 97.5%,模型参数数量和模型大小分别为 1.8 M 和 3.8 MB,与 YOLOv8 相比,分别减少了 40.86%和 39.68%。本研究表明,该模型提高了玉米叶片检测的准确性,有助于育种者做出科学决策,为玉米叶片数量移动终端检测设备的部署和应用提供了参考,为玉米生长的高质量评估提供了技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/a35f7d6c99f0/sensors-24-05279-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/4139c56a6b05/sensors-24-05279-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/5c075539ccbe/sensors-24-05279-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/9f763dffbad7/sensors-24-05279-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/4161660a9381/sensors-24-05279-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/67ec11786203/sensors-24-05279-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/f81b06636c4b/sensors-24-05279-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/f1f6770bb88c/sensors-24-05279-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/4d92a1b7f898/sensors-24-05279-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/059ef577906b/sensors-24-05279-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/dbce16f4a3a5/sensors-24-05279-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/a35f7d6c99f0/sensors-24-05279-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/4139c56a6b05/sensors-24-05279-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/5c075539ccbe/sensors-24-05279-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/9f763dffbad7/sensors-24-05279-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/4161660a9381/sensors-24-05279-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/67ec11786203/sensors-24-05279-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/f81b06636c4b/sensors-24-05279-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/f1f6770bb88c/sensors-24-05279-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/4d92a1b7f898/sensors-24-05279-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/059ef577906b/sensors-24-05279-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/dbce16f4a3a5/sensors-24-05279-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877c/11359063/a35f7d6c99f0/sensors-24-05279-g011.jpg

相似文献

[1]
Lightweight Corn Leaf Detection and Counting Using Improved YOLOv8.

Sensors (Basel). 2024-8-15

[2]
YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea.

Sensors (Basel). 2024-5-1

[3]
Wheat Seed Detection and Counting Method Based on Improved YOLOv8 Model.

Sensors (Basel). 2024-3-3

[4]
A Lightweight Strip Steel Surface Defect Detection Network Based on Improved YOLOv8.

Sensors (Basel). 2024-10-9

[5]
YOLOv8-Peas: a lightweight drought tolerance method for peas based on seed germination vigor.

Front Plant Sci. 2023-9-28

[6]
A lightweight Yunnan Xiaomila detection and pose estimation based on improved YOLOv8.

Front Plant Sci. 2024-6-5

[7]
Research on Improved Algorithms for Cone Bucket Detection in Formula Unmanned Competition.

Sensors (Basel). 2024-9-13

[8]
Concrete Surface Crack Detection Algorithm Based on Improved YOLOv8.

Sensors (Basel). 2024-8-14

[9]
YOLOv8-Coal: a coal-rock image recognition method based on improved YOLOv8.

PeerJ Comput Sci. 2024-9-16

[10]
RSE-YOLOv8: An Algorithm for Underwater Biological Target Detection.

Sensors (Basel). 2024-9-18

引用本文的文献

[1]
An improved YOLOv5s-based method for detecting rice leaves in the field.

Front Plant Sci. 2025-5-8

本文引用的文献

[1]
EMA-YOLO: A Novel Target-Detection Algorithm for Immature Yellow Peach Based on YOLOv8.

Sensors (Basel). 2024-6-11

[2]
Automatic object detection for behavioural research using YOLOv8.

Behav Res Methods. 2024-10

[3]
YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea.

Sensors (Basel). 2024-5-1

[4]
Self-Supervised Plant Phenotyping by Combining Domain Adaptation with 3D Plant Model Simulations: Application to Wheat Leaf Counting at Seedling Stage.

Plant Phenomics. 2023-4-11

[5]
Field rice panicle detection and counting based on deep learning.

Front Plant Sci. 2022-8-12

[6]
A Segmentation-Guided Deep Learning Framework for Leaf Counting.

Front Plant Sci. 2022-5-19

[7]
Wheat Spike Detection and Counting in the Field Based on SpikeRetinaNet.

Front Plant Sci. 2022-3-3

[8]
Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine.

Sensors (Basel). 2020-12-31

[9]
Real-Time Plant Leaf Counting Using Deep Object Detection Networks.

Sensors (Basel). 2020-12-3

[10]
Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks.

Front Plant Sci. 2020-6-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索