Suppr超能文献

在纳米结构非金属材料上形成的表面增强拉曼散射基底:制备与表征

Substrates for Surface-Enhanced Raman Scattering Formed on Nanostructured Non-Metallic Materials: Preparation and Characterization.

作者信息

Krajczewski Jan, Ambroziak Robert, Kudelski Andrzej

机构信息

Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland.

出版信息

Nanomaterials (Basel). 2020 Dec 31;11(1):75. doi: 10.3390/nano11010075.

Abstract

The efficiency of the generation of Raman spectra by molecules adsorbed on some substrates (or placed at a very close distance to some substrates) may be many orders of magnitude larger than the efficiency of the generation of Raman spectra by molecules that are not adsorbed. This effect is called surface-enhanced Raman scattering (SERS). In the first SERS experiments, nanostructured plasmonic metals have been used as SERS-active materials. Later, other types of SERS-active materials have also been developed. In this review article, various SERS substrates formed on nanostructured non-metallic materials, including non-metallic nanostructured thin films or non-metallic nanoparticles covered by plasmonic metals and SERS-active nanomaterials that do not contain plasmonic metals, are described. Significant advances for many important applications of SERS spectroscopy of substrates based on nanostructured non-metallic materials allow us to predict a large increase in the significance of such nanomaterials in the near future. Some future perspectives on the application of SERS substrates utilizing nanostructured non-metallic materials are also presented.

摘要

吸附在某些基底上(或与某些基底放置得非常靠近)的分子产生拉曼光谱的效率,可能比未吸附分子产生拉曼光谱的效率高出许多个数量级。这种效应被称为表面增强拉曼散射(SERS)。在最初的SERS实验中,纳米结构的等离子体金属被用作SERS活性材料。后来,其他类型的SERS活性材料也得到了开发。在这篇综述文章中,描述了在纳米结构的非金属材料上形成的各种SERS基底,包括被等离子体金属覆盖的非金属纳米结构薄膜或非金属纳米颗粒,以及不含等离子体金属的SERS活性纳米材料。基于纳米结构非金属材料的SERS光谱在许多重要应用方面取得的重大进展,使我们能够预测此类纳米材料在不久的将来重要性将大幅提高。还介绍了利用纳米结构非金属材料的SERS基底的一些未来应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd65/7824290/ac4b2a939482/nanomaterials-11-00075-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验