Marica Ioana, Nekvapil Fran, Ștefan Maria, Farcău Cosmin, Falamaș Alexandra
National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania.
Biomolecular Physics Department, Babeș-Bolyai University, 1 Kogălniceanu, 400084 Cluj-Napoca, Romania.
Beilstein J Nanotechnol. 2022 May 27;13:472-490. doi: 10.3762/bjnano.13.40. eCollection 2022.
Since the initial discovery of surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF), these techniques have shown huge potential for applications in biomedicine, biotechnology, and optical sensors. Both methods rely on the high electromagnetic fields created at locations on the surface of plasmonic metal nanoparticles, depending on the geometry of the nanoparticles, their surface features, and the specific location of analyte molecules. Lately, ZnO-based nanostructures have been exploited especially as SERS substrates showing high enhancement factors and increased charge transfer effect. Additionally, applications focused on enhancing the fluorescence of analyte molecules as well as on tuning the photoluminescence properties of ZnO nanostructures through combination with metal nanoparticles. This review covers the major recent results of ZnO-based nanostructures used for fluorescence and Raman signal enhancement. The broad range of ZnO and ZnO-metal nanostructures synthesis methods are discussed, highlighting low-cost methods and the recyclability of ZnO-based nanosubstrates. Also, the SERS signal enhancement by ZnO-based nanostructures and the influences of lattice defects on the SERS signal are described. The photoluminescence enhancement of ZnO in the presence of noble metal nanoparticles and the molecular fluorescence enhancement in the presence of ZnO alone and in combination with metal nanoparticles are also reviewed.
自从首次发现表面增强拉曼散射(SERS)和表面增强荧光(SEF)以来,这些技术在生物医学、生物技术和光学传感器领域展现出了巨大的应用潜力。这两种方法都依赖于等离子体金属纳米颗粒表面特定位置产生的强电磁场,这取决于纳米颗粒的几何形状、表面特征以及分析物分子的具体位置。最近,基于氧化锌(ZnO)的纳米结构尤其被用作SERS基底,展现出高增强因子和增强的电荷转移效应。此外,还有一些应用致力于增强分析物分子的荧光,以及通过与金属纳米颗粒结合来调控ZnO纳米结构的光致发光特性。本综述涵盖了基于ZnO的纳米结构用于荧光和拉曼信号增强的近期主要研究成果。讨论了多种ZnO及ZnO-金属纳米结构的合成方法,重点介绍了低成本方法以及基于ZnO的纳米基底的可回收性。同时,阐述了基于ZnO的纳米结构对SERS信号的增强作用以及晶格缺陷对SERS信号的影响。还综述了在贵金属纳米颗粒存在下ZnO的光致发光增强,以及单独的ZnO和与金属纳米颗粒结合时对分子荧光的增强作用。