Suppr超能文献

基于整合生物信息学分析鉴定类风湿关节炎中的差异表达基因、信号通路和免疫浸润。

Identification of differentially expressed genes, signaling pathways and immune infiltration in rheumatoid arthritis by integrated bioinformatics analysis.

机构信息

The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.

Department of Epidemiology and Biostatistics, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, PR China.

出版信息

Hereditas. 2021 Jan 4;158(1):5. doi: 10.1186/s41065-020-00169-3.

Abstract

BACKGROUND

The disability rate associated with rheumatoid arthritis (RA) ranks high among inflammatory joint diseases. However, the cause and potential molecular events are as yet not clear. Here, we aimed to identify differentially expressed genes (DEGs), pathways and immune infiltration involved in RA utilizing integrated bioinformatics analysis and investigating potential molecular mechanisms.

MATERIALS AND METHODS

The expression profiles of GSE55235, GSE55457, GSE55584 and GSE77298 were downloaded from the Gene Expression Omnibus database, which contained 76 synovial membrane samples, including 49 RA samples and 27 normal controls. The microarray datasets were consolidated and DEGs were acquired and further analyzed by bioinformatics techniques. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs were performed using R (version 3.6.1) software, respectively. The protein-protein interaction (PPI) network of DEGs were developed utilizing the STRING database. Finally, the CIBERSORT was used to evaluate the infiltration of immune cells in RA.

RESULTS

A total of 828 DEGs were recognized, with 758 up-regulated and 70 down-regulated. GO and KEGG pathway analyses demonstrated that these DEGs focused primarily on cytokine receptor activity and relevant signaling pathways. The 30 most firmly related genes among DEGs were identified from the PPI network. The principal component analysis showed that there was a significant difference between the two tissues in infiltration immune.

CONCLUSION

This study shows that screening for DEGs, pathways and immune infiltration utilizing integrated bioinformatics analyses could aid in the comprehension of the molecular mechanisms involved in RA development. Besides, our study provides valuable data related to DEGs, pathways and immune infiltration of RA and may provide new insight into the understanding of molecular mechanisms.

摘要

背景

类风湿关节炎(RA)相关的残疾率在炎性关节疾病中排名很高。然而,其病因和潜在的分子事件尚不清楚。在这里,我们旨在利用综合生物信息学分析来识别 RA 中涉及的差异表达基因(DEGs)、途径和免疫浸润,并探讨潜在的分子机制。

材料和方法

从基因表达综合数据库(GEO)下载了 GSE55235、GSE55457、GSE55584 和 GSE77298 的表达谱,其中包含 76 个滑膜膜样本,包括 49 个 RA 样本和 27 个正常对照。通过生物信息学技术对微阵列数据集进行了整合和 DEGs 的获取,并进一步进行了分析。使用 R(版本 3.6.1)软件分别对 DEGs 进行了基因本体(GO)和京都基因与基因组百科全书(KEGG)通路富集分析。利用 STRING 数据库构建了 DEGs 的蛋白质-蛋白质相互作用(PPI)网络。最后,使用 CIBERSORT 评估 RA 中免疫细胞的浸润。

结果

共鉴定出 828 个 DEGs,其中 758 个上调,70 个下调。GO 和 KEGG 通路分析表明,这些 DEGs 主要集中在细胞因子受体活性和相关信号通路。从 PPI 网络中确定了 30 个与 DEGs 最密切相关的基因。主成分分析表明,两种组织在浸润免疫方面存在显著差异。

结论

本研究利用综合生物信息学分析筛选 DEGs、途径和免疫浸润,有助于理解 RA 发展中涉及的分子机制。此外,我们的研究为 RA 的 DEGs、途径和免疫浸润提供了有价值的数据,并可能为深入了解分子机制提供新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b76f/7784358/34fb77e6e767/41065_2020_169_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验