Suppr超能文献

利用冠状病毒抗原微阵列分析 COVID-19 恢复期血液中的 SARS-CoV-2 抗体。

Analysis of SARS-CoV-2 antibodies in COVID-19 convalescent blood using a coronavirus antigen microarray.

机构信息

Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA.

Vitalant Research Institute, San Francisco, CA, USA.

出版信息

Nat Commun. 2021 Jan 4;12(1):6. doi: 10.1038/s41467-020-20095-2.

Abstract

The current practice for diagnosis of COVID-19, based on SARS-CoV-2 PCR testing of pharyngeal or respiratory specimens in a symptomatic patient at high epidemiologic risk, likely underestimates the true prevalence of infection. Serologic methods can more accurately estimate the disease burden by detecting infections missed by the limited testing performed to date. Here, we describe the validation of a coronavirus antigen microarray containing immunologically significant antigens from SARS-CoV-2, in addition to SARS-CoV, MERS-CoV, common human coronavirus strains, and other common respiratory viruses. A comparison of antibody profiles detected on the array from control sera collected prior to the SARS-CoV-2 pandemic versus convalescent blood specimens from virologically confirmed COVID-19 cases demonstrates near complete discrimination of these two groups, with improved performance from use of antigen combinations that include both spike protein and nucleoprotein. This array can be used as a diagnostic tool, as an epidemiologic tool to more accurately estimate the disease burden of COVID-19, and as a research tool to correlate antibody responses with clinical outcomes.

摘要

目前,COVID-19 的诊断方法是基于对高流行病学风险的有症状患者的咽拭子或呼吸道标本进行 SARS-CoV-2 PCR 检测,但这种方法可能低估了实际感染的流行程度。血清学方法通过检测到目前有限检测中遗漏的感染,可以更准确地估计疾病负担。在这里,我们描述了一种冠状病毒抗原微阵列的验证,该微阵列包含 SARS-CoV-2 以及 SARS-CoV、MERS-CoV、常见人类冠状病毒株和其他常见呼吸道病毒的免疫相关抗原。对 SARS-CoV-2 大流行前采集的对照血清与经病毒学证实的 COVID-19 病例的恢复期血液标本在阵列上检测到的抗体谱进行比较,结果表明这两组几乎完全可以区分,使用包含刺突蛋白和核蛋白的抗原组合可以提高性能。该阵列可作为诊断工具、流行病学工具,更准确地估计 COVID-19 的疾病负担,以及作为研究工具,将抗体反应与临床结果相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/707f/7782488/7915a88f34c8/41467_2020_20095_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验