文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肿瘤和细胞系转录谱的全局计算比对。

Global computational alignment of tumor and cell line transcriptional profiles.

机构信息

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.

出版信息

Nat Commun. 2021 Jan 4;12(1):22. doi: 10.1038/s41467-020-20294-x.


DOI:10.1038/s41467-020-20294-x
PMID:33397959
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7782593/
Abstract

Cell lines are key tools for preclinical cancer research, but it remains unclear how well they represent patient tumor samples. Direct comparisons of tumor and cell line transcriptional profiles are complicated by several factors, including the variable presence of normal cells in tumor samples. We thus develop an unsupervised alignment method (Celligner) and apply it to integrate several large-scale cell line and tumor RNA-Seq datasets. Although our method aligns the majority of cell lines with tumor samples of the same cancer type, it also reveals large differences in tumor similarity across cell lines. Using this approach, we identify several hundred cell lines from diverse lineages that present a more mesenchymal and undifferentiated transcriptional state and that exhibit distinct chemical and genetic dependencies. Celligner could be used to guide the selection of cell lines that more closely resemble patient tumors and improve the clinical translation of insights gained from cell lines.

摘要

细胞系是癌症临床前研究的重要工具,但它们在多大程度上能代表患者肿瘤样本仍不清楚。肿瘤和细胞系转录谱的直接比较受到多种因素的影响,包括肿瘤样本中正常细胞的存在情况不同。因此,我们开发了一种无监督的对齐方法(Celligner),并将其应用于整合几个大规模的细胞系和肿瘤 RNA-Seq 数据集。尽管我们的方法可以将大多数细胞系与相同癌症类型的肿瘤样本对齐,但它也揭示了细胞系之间肿瘤相似性的巨大差异。通过这种方法,我们从不同的谱系中鉴定出数百种具有更间质和未分化转录状态的细胞系,并且表现出明显不同的化学和遗传依赖性。Celligner 可用于指导选择更接近患者肿瘤的细胞系,并提高从细胞系中获得的见解的临床转化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec30/7782593/4c870e3b54bd/41467_2020_20294_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec30/7782593/96fb08c2e1fa/41467_2020_20294_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec30/7782593/7fc419cf8a00/41467_2020_20294_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec30/7782593/8a1ac998caf6/41467_2020_20294_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec30/7782593/d04d167fa024/41467_2020_20294_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec30/7782593/4c870e3b54bd/41467_2020_20294_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec30/7782593/96fb08c2e1fa/41467_2020_20294_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec30/7782593/7fc419cf8a00/41467_2020_20294_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec30/7782593/8a1ac998caf6/41467_2020_20294_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec30/7782593/d04d167fa024/41467_2020_20294_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec30/7782593/4c870e3b54bd/41467_2020_20294_Fig5_HTML.jpg

相似文献

[1]
Global computational alignment of tumor and cell line transcriptional profiles.

Nat Commun. 2021-1-4

[2]
A Patient-Derived, Pan-Cancer EMT Signature Identifies Global Molecular Alterations and Immune Target Enrichment Following Epithelial-to-Mesenchymal Transition.

Clin Cancer Res. 2016-2-1

[3]
Bridging the gap between cancer cell line models and tumours using gene expression data.

Br J Cancer. 2021-8

[4]
Identifying global expression patterns and key regulators in epithelial to mesenchymal transition through multi-study integration.

BMC Cancer. 2017-6-26

[5]
Epithelial-to-mesenchymal transition signature assessment in colorectal cancer quantifies tumour stromal content rather than true transition.

J Pathol. 2018-12

[6]
Genes suppressed by DNA methylation in non-small cell lung cancer reveal the epigenetics of epithelial-mesenchymal transition.

BMC Genomics. 2014-12-8

[7]
A framework to select clinically relevant cancer cell lines for investigation by establishing their molecular similarity with primary human cancers.

Cancer Res. 2011-10-19

[8]
Subcellular progression of mesenchymal transition identified by two discrete synchronous cell lines derived from the same glioblastoma.

Cell Mol Life Sci. 2022-3-12

[9]
Comprehensive discovery of subsample gene expression components by information explanation: therapeutic implications in cancer.

BMC Med Genomics. 2017-3-15

[10]
Epithelial and mesenchymal subpopulations within normal basal breast cell lines exhibit distinct stem cell/progenitor properties.

Stem Cells. 2012-2

引用本文的文献

[1]
A self-adaptive and versatile tool for eliminating multiple undesirable variations from large-scale transcriptomes.

Nat Biomed Eng. 2025-7-25

[2]
Cell-intrinsic platinum response and associated genetic and gene expression signatures in ovarian cancer.

Cancer Gene Ther. 2025-7-19

[3]
A disentangled generative model for improved drug response prediction in patients via sample synthesis.

J Pharm Anal. 2025-6

[4]
The synthetic lethal interaction between CDS1 and CDS2 is a vulnerability in uveal melanoma and across multiple tumor types.

Nat Genet. 2025-7-4

[5]
Consistently processed RNA sequencing data from 50 sources enriched for pediatric data.

Sci Data. 2025-7-2

[6]
FAM46C Expression Sensitizes Multiple Myeloma Cells to PF-543-Induced Cytotoxicity.

Biomolecules. 2025-4-26

[7]
CellHit: a web server to predict and analyze cancer patients' drug responsiveness.

Nucleic Acids Res. 2025-7-7

[8]
Learning and actioning general principles of cancer cell drug sensitivity.

Nat Commun. 2025-2-15

[9]
Refined culture conditions with increased physiological relevance uncover oncogene-dependent metabolic signatures in Ewing sarcoma spheroids.

Cell Rep Methods. 2025-2-24

[10]
Biologically relevant integration of transcriptomics profiles from cancer cell lines, patient-derived xenografts, and clinical tumors using deep learning.

Sci Adv. 2025-1-17

本文引用的文献

[1]
Evaluating the transcriptional fidelity of cancer models.

Genome Med. 2021-4-29

[2]
Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma.

Nat Cell Biol. 2020-8-3

[3]
Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling.

Nat Cancer. 2020-2

[4]
CELLector: Genomics-Guided Selection of Cancer In Vitro Models.

Cell Syst. 2020-5-20

[5]
Evaluation of colorectal cancer subtypes and cell lines using deep learning.

Life Sci Alliance. 2019-12-2

[6]
PRECISE: a domain adaptation approach to transfer predictors of drug response from pre-clinical models to tumors.

Bioinformatics. 2019-7-15

[7]
Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

Nat Commun. 2019-8-8

[8]
Expanded CIBERSORTx.

Nat Methods. 2019-7

[9]
Next-generation characterization of the Cancer Cell Line Encyclopedia.

Nature. 2019-5-8

[10]
From cell lines to living biosensors: new opportunities to prioritize cancer dependencies using ex vivo tumor cultures.

Curr Opin Genet Dev. 2019-3-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索