Qiu Zhizhan, Holwill Matthew, Olsen Thomas, Lyu Pin, Li Jing, Fang Hanyan, Yang Huimin, Kashchenko Mikhail, Novoselov Kostya S, Lu Jiong
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK.
Nat Commun. 2021 Jan 4;12(1):70. doi: 10.1038/s41467-020-20376-w.
The discovery of two-dimensional (2D) magnetism combined with van der Waals (vdW) heterostructure engineering offers unprecedented opportunities for creating artificial magnetic structures with non-trivial magnetic textures. Further progress hinges on deep understanding of electronic and magnetic properties of 2D magnets at the atomic scale. Although local electronic properties can be probed by scanning tunneling microscopy/spectroscopy (STM/STS), its application to investigate 2D magnetic insulators remains elusive due to absence of a conducting path and their extreme air sensitivity. Here we demonstrate that few-layer CrI (FL-CrI) covered by graphene can be characterized electronically and magnetically via STM by exploiting the transparency of graphene to tunneling electrons. STS reveals electronic structures of FL-CrI including flat bands responsible for its magnetic state. AFM-to-FM transition of FL-CrI can be visualized through the magnetic field dependent moiré contrast in the dI/dV maps due to a change of the electronic hybridization between graphene and spin-polarised CrI bands with different interlayer magnetic coupling. Our findings provide a general route to probe atomic-scale electronic and magnetic properties of 2D magnetic insulators for future spintronics and quantum technology applications.
二维(2D)磁性与范德华(vdW)异质结构工程的结合,为创造具有非平凡磁结构的人工磁结构提供了前所未有的机会。进一步的进展取决于在原子尺度上对二维磁体的电子和磁性特性的深入理解。尽管可以通过扫描隧道显微镜/光谱(STM/STS)探测局部电子特性,但由于缺乏导电路径及其对空气的极端敏感性,其在研究二维磁绝缘体方面的应用仍然难以实现。在这里,我们证明,通过利用石墨烯对隧穿电子的透明度,覆盖有石墨烯的少层CrI(FL-CrI)可以通过STM进行电子和磁性表征。STS揭示了FL-CrI的电子结构,包括负责其磁态的平带。由于石墨烯与具有不同层间磁耦合的自旋极化CrI能带之间的电子杂化变化,FL-CrI从反铁磁到铁磁的转变可以通过dI/dV图中与磁场相关的莫尔对比度来可视化。我们的发现为探测二维磁绝缘体的原子尺度电子和磁性特性提供了一条通用途径,以用于未来的自旋电子学和量子技术应用。