Suppr超能文献

六方氮化硼中缺陷的原子和电子结构:增强单缺陷功能

Atomic and Electronic Structure of Defects in hBN: Enhancing Single-Defect Functionalities.

作者信息

Qiu Zhizhan, Vaklinova Kristina, Huang Pengru, Grzeszczyk Magdalena, Watanabe Kenji, Taniguchi Takashi, Novoselov Kostya S, Lu Jiong, Koperski Maciej

机构信息

Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore.

Institute for Functional Intelligent Materials, National University of Singapore, 117544 Singapore.

出版信息

ACS Nano. 2024 Sep 3;18(35):24035-24043. doi: 10.1021/acsnano.4c03640. Epub 2024 Aug 20.

Abstract

Defect centers in insulators play a critical role in creating important functionalities in materials: prototype qubits, single-photon sources, magnetic field probes, and pressure sensors. These functionalities are highly dependent on their midgap electronic structure and orbital/spin wave function contributions. However, in most cases, these fundamental properties remain unknown or speculative due to the defects being deeply embedded beneath the surface of highly resistive host crystals, thus impeding access through surface probes. Here, we directly inspected the atomic and electronic structures of defects in thin carbon-doped hexagonal boron nitride (hBN:C) by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Such investigation adds direct information about the electronic midgap states to the well-established photoluminescence response (including single-photon emission) of intentionally created carbon defects in the most commonly investigated van der Waals insulator. Our joint atomic-scale experimental and theoretical investigations reveal two main categories of defects: (1) single-site defects manifesting as donor-like states with atomically resolved structures observable via STM and (2) multisite defect complexes exhibiting a ladder of empty and occupied midgap states characterized by distinct spatial geometries. Combining direct probing of midgap states through tunneling spectroscopy with the inspection of the optical response of insulators hosting specific defect structures holds promise for creating and enhancing functionalities realized with individual defects in the quantum limit. These findings underscore not only the versatility of hBN:C as a platform for quantum defect engineering but also its potential to drive advancements in atomic-scale optoelectronics.

摘要

绝缘体中的缺陷中心在赋予材料重要功能方面起着关键作用

如原型量子比特、单光子源、磁场探测器和压力传感器。这些功能高度依赖于它们的禁带中部电子结构以及轨道/自旋波函数的贡献。然而,在大多数情况下,由于这些缺陷深埋在高电阻主体晶体表面之下,这些基本特性仍然未知或只是推测,从而阻碍了通过表面探针进行探测。在这里,我们使用扫描隧道显微镜(STM)和扫描隧道谱(STS)直接检查了薄碳掺杂六方氮化硼(hBN:C)中缺陷的原子和电子结构。这样的研究为最常研究的范德华绝缘体中有意制造的碳缺陷的成熟光致发光响应(包括单光子发射)增加了关于电子禁带中部状态的直接信息。我们联合进行的原子尺度实验和理论研究揭示了两类主要缺陷:(1)单位点缺陷表现为类似施主的状态,其原子分辨结构可通过STM观察到;(2)多位点缺陷复合体表现出一系列空的和占据的禁带中部状态,其特征是具有不同的空间几何形状。将通过隧道谱对禁带中部状态的直接探测与对具有特定缺陷结构的绝缘体的光学响应的检查相结合,有望在量子极限下利用单个缺陷创造和增强功能。这些发现不仅强调了hBN:C作为量子缺陷工程平台的多功能性,也突出了其推动原子尺度光电子学进步的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd56/11375783/ef0b833c72f4/nn4c03640_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验