Suppr超能文献

隐私保护措施,以鼓励在学习型健康系统中使用与健康相关的数字数据。

Privacy protections to encourage use of health-relevant digital data in a learning health system.

作者信息

McGraw Deven, Mandl Kenneth D

机构信息

Ciitizen, Palo Alto, CA, USA.

Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

NPJ Digit Med. 2021 Jan 4;4(1):2. doi: 10.1038/s41746-020-00362-8.

Abstract

The National Academy of Medicine has long advocated for a "learning healthcare system" that produces constantly updated reference data during the care process. Moving toward a rapid learning system to solve intractable problems in health demands a balance between protecting patients and making data available to improve health and health care. Public concerns in the U.S. about privacy and the potential for unethical or harmful uses of this data, if not proactively addressed, could upset this balance. New federal laws prioritize sharing health data, including with patient digital tools. U.S. health privacy laws do not cover data collected by many consumer digital technologies and have not been updated to address concerns about the entry of large technology companies into health care. Further, there is increasing recognition that many classes of data not traditionally considered to be healthcare-related, for example consumer credit histories, are indeed predictive of health status and outcomes. We propose a multi-pronged approach to protecting health-relevant data while promoting and supporting beneficial uses and disclosures to improve health and health care for individuals and populations. Such protections should apply to entities collecting health-relevant data regardless of whether they are covered by federal health privacy laws. We focus largely on privacy but also address protections against harms as a critical component of a comprehensive approach to governing health-relevant data. U.S. policymakers and regulators should consider these recommendations in crafting privacy bills and rules. However, our recommendations also can inform best practices even in the absence of new federal requirements.

摘要

美国国家医学院长期倡导建立一个“学习型医疗系统”,该系统在医疗过程中生成不断更新的参考数据。朝着快速学习系统迈进以解决健康领域的棘手问题,需要在保护患者与提供数据以改善健康和医疗保健之间取得平衡。如果不积极解决,美国公众对隐私以及这些数据可能被不道德或有害使用的担忧,可能会打破这种平衡。新的联邦法律将健康数据共享列为优先事项,包括与患者数字工具共享。美国的健康隐私法并不涵盖许多消费数字技术收集的数据,并且尚未更新以解决对大型科技公司进入医疗保健领域的担忧。此外,人们越来越认识到,许多传统上不被视为与医疗保健相关的数据类别,例如消费者信用记录,实际上可以预测健康状况和结果。我们提出了一种多管齐下的方法,在保护与健康相关的数据的同时,促进和支持有益的使用和披露,以改善个人和人群的健康及医疗保健。此类保护应适用于收集与健康相关数据的实体,无论它们是否受联邦健康隐私法的涵盖。我们主要关注隐私,但也将防范伤害作为管理与健康相关数据的综合方法的关键组成部分加以探讨。美国政策制定者和监管机构在制定隐私法案和规则时应考虑这些建议。然而,即使在没有新的联邦要求的情况下,我们的建议也可为最佳实践提供参考。

相似文献

3
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
6
10

引用本文的文献

8
Harnessing digital health data for suicide prevention and care: A rapid review.利用数字健康数据预防自杀和提供护理:快速综述。
Digit Health. 2025 Feb 23;11:20552076241308615. doi: 10.1177/20552076241308615. eCollection 2025 Jan-Dec.

本文引用的文献

6
Data Citizenship under the 21st Century Cures Act.《21世纪治愈法案》下的数据公民身份
N Engl J Med. 2020 May 7;382(19):1781-1783. doi: 10.1056/NEJMp1917640. Epub 2020 Mar 11.
10
A Belmont Report for Health Data.一份关于健康数据的《贝尔蒙报告》。
N Engl J Med. 2019 Apr 18;380(16):1493-1495. doi: 10.1056/NEJMp1816373.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验