Suppr超能文献

用于乳腺癌诊断的具有差分隐私的联邦学习,实现安全的数据共享和模型完整性。

Federated learning with differential privacy for breast cancer diagnosis enabling secure data sharing and model integrity.

作者信息

Shukla Shubhi, Rajkumar Suraksha, Sinha Aditi, Esha Mohamed, Elango Konguvel, Sampath Vidhya

机构信息

School of Electrical Engineering, Vellore Institute of Technology, Vellore, 632014, India.

School of Electronics Engineering, Vellore Institute of Technology, Vellore, 632014, India.

出版信息

Sci Rep. 2025 Apr 16;15(1):13061. doi: 10.1038/s41598-025-95858-2.

Abstract

In the digital age, privacy preservation is of paramount importance while processing health-related sensitive information. This paper explores the integration of Federated Learning (FL) and Differential Privacy (DP) for breast cancer detection, leveraging FL's decentralized architecture to enable collaborative model training across healthcare organizations without exposing raw patient data. To enhance privacy, DP injects statistical noise into the updates made by the model. This mitigates adversarial attacks and prevents data leakage. The proposed work uses the Breast Cancer Wisconsin Diagnostic dataset to address critical challenges such as data heterogeneity, privacy-accuracy trade-offs, and computational overhead. From the experimental results, FL combined with DP achieves 96.1% accuracy with a privacy budget of ε = 1.9, ensuring strong privacy preservation with minimal performance trade-offs. In comparison, the traditional non-FL model achieved 96.0% accuracy, but at the cost of requiring centralized data storage, which poses significant privacy risks. These findings validate the feasibility of privacy-preserving artificial intelligence models in real-world clinical applications, effectively balancing data protection with reliable medical predictions.

摘要

在数字时代,处理与健康相关的敏感信息时,隐私保护至关重要。本文探讨了联邦学习(FL)和差分隐私(DP)在乳腺癌检测中的集成,利用FL的去中心化架构,在不暴露原始患者数据的情况下,实现跨医疗组织的协作模型训练。为了增强隐私保护,DP向模型更新中注入统计噪声。这减轻了对抗性攻击并防止了数据泄露。所提出的工作使用威斯康星乳腺癌诊断数据集来解决数据异质性、隐私-准确性权衡和计算开销等关键挑战。从实验结果来看,FL与DP相结合在隐私预算为ε = 1.9的情况下,准确率达到了96.1%,确保了在性能权衡最小的情况下实现强大的隐私保护。相比之下,传统的非FL模型准确率为96.0%,但需要集中式数据存储,这带来了重大的隐私风险。这些发现验证了隐私保护人工智能模型在实际临床应用中的可行性,有效地在数据保护和可靠的医学预测之间取得了平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7b9/12003885/7b96dd10497e/41598_2025_95858_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验