School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
Nat Microbiol. 2021 Feb;6(2):246-256. doi: 10.1038/s41564-020-00811-w. Epub 2021 Jan 4.
Soil microorganisms globally are thought to be sustained primarily by organic carbon sources. Certain bacteria also consume inorganic energy sources such as trace gases, but they are presumed to be rare community members, except within some oligotrophic soils. Here we combined metagenomic, biogeochemical and modelling approaches to determine how soil microbial communities meet energy and carbon needs. Analysis of 40 metagenomes and 757 derived genomes indicated that over 70% of soil bacterial taxa encode enzymes to consume inorganic energy sources. Bacteria from 19 phyla encoded enzymes to use the trace gases hydrogen and carbon monoxide as supplemental electron donors for aerobic respiration. In addition, we identified a fourth phylum (Gemmatimonadota) potentially capable of aerobic methanotrophy. Consistent with the metagenomic profiling, communities within soil profiles from diverse habitats rapidly oxidized hydrogen, carbon monoxide and to a lesser extent methane below atmospheric concentrations. Thermodynamic modelling indicated that the power generated by oxidation of these three gases is sufficient to meet the maintenance needs of the bacterial cells capable of consuming them. Diverse bacteria also encode enzymes to use trace gases as electron donors to support carbon fixation. Altogether, these findings indicate that trace gas oxidation confers a major selective advantage in soil ecosystems, where availability of preferred organic substrates limits microbial growth. The observation that inorganic energy sources may sustain most soil bacteria also has broad implications for understanding atmospheric chemistry and microbial biodiversity in a changing world.
据认为,全球土壤微生物主要依靠有机碳源得以维持。某些细菌也会消耗无机能源物质,例如痕量气体,但它们被认为是稀有群落成员,除了在一些贫营养土壤中。在这里,我们结合宏基因组学、生物地球化学和模型构建方法来确定土壤微生物群落如何满足能量和碳需求。对 40 个宏基因组和 757 个衍生基因组的分析表明,超过 70%的土壤细菌类群编码了消耗无机能源物质的酶。19 个门的细菌编码了酶,以氢气和一氧化碳作为补充电子供体,用于好氧呼吸。此外,我们还鉴定了一个潜在能够进行好氧甲烷氧化的第四门(Gemmatimonadota)。与宏基因组分析一致,来自不同生境的土壤剖面中的群落迅速氧化了低于大气浓度的氢气、一氧化碳和在较小程度上的甲烷。热力学模型表明,这些三种气体氧化所产生的能量足以满足能够消耗它们的细菌细胞的维持需求。多样化的细菌还编码了酶,以痕量气体作为电子供体,以支持碳固定。总之,这些发现表明,痕量气体氧化在土壤生态系统中赋予了一个主要的选择优势,因为在这种生态系统中,可用的首选有机底物限制了微生物的生长。观察到无机能源物质可能维持大多数土壤细菌,这也对理解不断变化的世界中的大气化学和微生物生物多样性具有广泛的意义。