Suppr超能文献

任务特异性调节前额叶皮层活动以进行匹配规则指导的决策。

Task-specific modulation of PFC activity for matching-rule governed decision-making.

机构信息

School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.

Neuroscience and Neuroengineering Research Laboratory, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.

出版信息

Brain Struct Funct. 2021 Mar;226(2):443-455. doi: 10.1007/s00429-020-02191-7. Epub 2021 Jan 4.

Abstract

Storing information from incoming stimuli in working memory (WM) is essential for decision-making. The prefrontal cortex (PFC) plays a key role to support this process. Previous studies have characterized different neuronal populations in the PFC for working memory judgements based on whether an originally presented stimulus matches a subsequently presented one (matching-rule decision-making). However, much remains to be understood about this mechanism at the population level of PFC neurons. Here, we hypothesized differences in processing of feature vs. spatial WM within the PFC during a matching-rule decision-making task. To test this hypothesis, the modulation of neural activity within the PFC during two types of decision-making tasks (spatial WM and feature WM) in comparison to a passive fixation task was determined. We discovered that neural population-level activity within the PFC is different for the match vs. non-match condition exclusively in the case of the feature-specific decision-making task. For this task, the non-match condition exhibited a greater firing rate and lower trial-to-trial variability in spike count compared to the feature-match condition. Furthermore, the feature-match condition exhibited lower variability compared to the spatial-match condition. This was accompanied by a faster behavioral response time for the feature-match compared to the spatial-match WM task. We attribute this lower across-trial spiking variability and behavioral response time to a higher task-relevant attentional level in the feature WM compared to the spatial WM task. The findings support our hypothesis for task-specific differences in the processing of feature vs. spatial WM within the PFC. This also confirms the general conclusion that PFC neurons play an important role during the process of matching-rule governed decision-making.

摘要

在工作记忆 (WM) 中存储来自传入刺激的信息对于决策至关重要。前额叶皮层 (PFC) 在支持这个过程中起着关键作用。先前的研究已经根据最初呈现的刺激是否与随后呈现的刺激匹配 (匹配规则决策) 来描述 PFC 中的不同神经元群体进行工作记忆判断。然而,在 PFC 神经元群体水平上,对于这种机制仍有许多需要了解。在这里,我们假设在匹配规则决策任务期间,PFC 内的特征与空间 WM 的处理存在差异。为了检验这一假设,我们确定了在两种决策任务(空间 WM 和特征 WM)与被动注视任务期间 PFC 内的神经活动调制。我们发现,仅在特征特定决策任务中,PFC 内的神经群体活动在匹配与不匹配条件之间存在差异。对于这个任务,不匹配条件的放电率更高,相对于特征匹配条件,尖峰计数的试验间变异性更低。此外,特征匹配条件的变异性低于空间匹配条件。与空间匹配 WM 任务相比,特征匹配任务的行为反应时间更快。我们将这种较低的跨试验尖峰变异性和行为反应时间归因于特征 WM 中比空间 WM 任务更高的任务相关注意力水平。研究结果支持我们在 PFC 内处理特征与空间 WM 的任务特异性差异的假设。这也证实了一般结论,即 PFC 神经元在匹配规则控制的决策过程中起着重要作用。

相似文献

1
Task-specific modulation of PFC activity for matching-rule governed decision-making.
Brain Struct Funct. 2021 Mar;226(2):443-455. doi: 10.1007/s00429-020-02191-7. Epub 2021 Jan 4.
2
Neural correlates of a decision variable before learning to perform a match/non-match task.
J Neurosci. 2012 May 2;32(18):6161-9. doi: 10.1523/JNEUROSCI.6365-11.2012.
3
Prefrontal spatial working memory network predicts animal's decision making in a free choice saccade task.
J Neurophysiol. 2016 Jan 1;115(1):127-42. doi: 10.1152/jn.00255.2015. Epub 2015 Oct 21.
5
Trial-to-Trial Variability of Spiking Delay Activity in Prefrontal Cortex Constrains Burst-Coding Models of Working Memory.
J Neurosci. 2021 Oct 27;41(43):8928-8945. doi: 10.1523/JNEUROSCI.0167-21.2021. Epub 2021 Sep 22.
7
Working Memory and Decision-Making in a Frontoparietal Circuit Model.
J Neurosci. 2017 Dec 13;37(50):12167-12186. doi: 10.1523/JNEUROSCI.0343-17.2017. Epub 2017 Nov 7.
8
Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex.
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):394-399. doi: 10.1073/pnas.1619449114. Epub 2016 Dec 27.
9
Interareal Spike-Train Correlations of Anterior Cingulate and Dorsal Prefrontal Cortex during Attention Shifts.
J Neurosci. 2015 Sep 23;35(38):13076-89. doi: 10.1523/JNEUROSCI.1262-15.2015.
10
Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex.
J Neurosci. 2017 Jul 5;37(27):6503-6516. doi: 10.1523/JNEUROSCI.3364-16.2017. Epub 2017 May 30.

引用本文的文献

1
Enhancing golf swing performance through M1-targeted transcranial direct current stimulation: a double-blind, randomized crossover study.
Front Sports Act Living. 2025 Jul 16;7:1615617. doi: 10.3389/fspor.2025.1615617. eCollection 2025.
2
Functional role of cell classes in monkey prefrontal cortex after learning a working memory task.
Commun Biol. 2025 May 6;8(1):703. doi: 10.1038/s42003-025-08142-4.
3
EEG β oscillations in aberrant data perception under cognitive load modulation.
Sci Rep. 2024 Oct 3;14(1):22995. doi: 10.1038/s41598-024-74381-w.
4
Advances in AAV technology for delivering genetically encoded cargo to the nonhuman primate nervous system.
Curr Res Neurobiol. 2023 Apr 7;4:100086. doi: 10.1016/j.crneur.2023.100086. eCollection 2023.
6
Sensory representation of visual stimuli in the coupling of low-frequency phase to spike times.
Brain Struct Funct. 2022 Jun;227(5):1641-1654. doi: 10.1007/s00429-022-02460-7. Epub 2022 Feb 1.
7
Prefrontal Lesions Disrupt Posterior Alpha-Gamma Coordination of Visual Working Memory Representations.
J Cogn Neurosci. 2021 Aug 1;33(9):1798-1810. doi: 10.1162/jocn_a_01715.

本文引用的文献

1
Adaptation Modulates Spike-Phase Coupling Tuning Curve in the Rat Primary Auditory Cortex.
Front Syst Neurosci. 2020 Aug 3;14:55. doi: 10.3389/fnsys.2020.00055. eCollection 2020.
2
Stimulus-Specific Adaptation Decreases the Coupling of Spikes to LFP Phase.
Front Neural Circuits. 2019 Jul 3;13:44. doi: 10.3389/fncir.2019.00044. eCollection 2019.
3
Neural Variability Is Quenched by Attention.
J Neurosci. 2019 Jul 24;39(30):5975-5985. doi: 10.1523/JNEUROSCI.0355-19.2019. Epub 2019 May 31.
4
Hierarchical reasoning by neural circuits in the frontal cortex.
Science. 2019 May 17;364(6441). doi: 10.1126/science.aav8911.
5
Direct brain recordings reveal prefrontal cortex dynamics of memory development.
Sci Adv. 2018 Dec 19;4(12):eaat3702. doi: 10.1126/sciadv.aat3702. eCollection 2018 Dec.
7
Enhanced Neural Processing by Covert Attention only during Microsaccades Directed toward the Attended Stimulus.
Neuron. 2018 Jul 11;99(1):207-214.e3. doi: 10.1016/j.neuron.2018.05.041. Epub 2018 Jun 21.
8
Attention Effects on Neural Population Representations for Shape and Location Are Stronger in the Ventral than Dorsal Stream.
eNeuro. 2018 Jun 5;5(2). doi: 10.1523/ENEURO.0371-17.2018. eCollection 2018 Mar-Apr.
9
Dynamic frontotemporal systems process space and time in working memory.
PLoS Biol. 2018 Mar 30;16(3):e2004274. doi: 10.1371/journal.pbio.2004274. eCollection 2018 Mar.
10
Encoding of Spatial Attention by Primate Prefrontal Cortex Neuronal Ensembles.
eNeuro. 2018 Mar 21;5(1). doi: 10.1523/ENEURO.0372-16.2017. eCollection 2018 Jan-Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验