Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Department of Surgery, The Chaim Sheba Medical Center, Ramat Gan, Israel.
Surg Endosc. 2021 Apr;35(4):1521-1533. doi: 10.1007/s00464-020-08168-1. Epub 2021 Jan 4.
In the past decade, deep learning has revolutionized medical image processing. This technique may advance laparoscopic surgery. Study objective was to evaluate whether deep learning networks accurately analyze videos of laparoscopic procedures.
Medline, Embase, IEEE Xplore, and the Web of science databases were searched from January 2012 to May 5, 2020. Selected studies tested a deep learning model, specifically convolutional neural networks, for video analysis of laparoscopic surgery. Study characteristics including the dataset source, type of operation, number of videos, and prediction application were compared. A random effects model was used for estimating pooled sensitivity and specificity of the computer algorithms. Summary receiver operating characteristic curves were calculated by the bivariate model of Reitsma.
Thirty-two out of 508 studies identified met inclusion criteria. Applications included instrument recognition and detection (45%), phase recognition (20%), anatomy recognition and detection (15%), action recognition (13%), surgery time prediction (5%), and gauze recognition (3%). The most common tested procedures were cholecystectomy (51%) and gynecological-mainly hysterectomy and myomectomy (26%). A total of 3004 videos were analyzed. Publications in clinical journals increased in 2020 compared to bio-computational ones. Four studies provided enough data to construct 8 contingency tables, enabling calculation of test accuracy with a pooled sensitivity of 0.93 (95% CI 0.85-0.97) and specificity of 0.96 (95% CI 0.84-0.99). Yet, the majority of papers had a high risk of bias.
Deep learning research holds potential in laparoscopic surgery, but is limited in methodologies. Clinicians may advance AI in surgery, specifically by offering standardized visual databases and reporting.
在过去的十年中,深度学习彻底改变了医学图像处理。这项技术可能会推动腹腔镜手术的发展。本研究旨在评估深度学习网络是否能准确分析腹腔镜手术视频。
从 2012 年 1 月至 2020 年 5 月 5 日,检索了 Medline、Embase、IEEE Xplore 和 Web of Science 数据库。入选的研究检验了用于腹腔镜手术视频分析的深度学习模型,即卷积神经网络。研究特征包括数据集来源、手术类型、视频数量和预测应用。使用随机效应模型估计计算机算法的汇总敏感性和特异性。通过 Reitsma 的双变量模型计算汇总受试者工作特征曲线。
在 508 项研究中,有 32 项符合纳入标准。应用包括器械识别和检测(45%)、阶段识别(20%)、解剖识别和检测(15%)、动作识别(13%)、手术时间预测(5%)和纱布识别(3%)。最常测试的手术是胆囊切除术(51%)和妇科手术(主要是子宫切除术和子宫肌瘤切除术)(26%)。共分析了 3004 个视频。与生物计算相关的研究相比,临床期刊上的出版物在 2020 年有所增加。有 4 项研究提供了足够的数据来构建 8 个列联表,从而计算出汇总敏感性为 0.93(95%置信区间 0.85-0.97)和特异性为 0.96(95%置信区间 0.84-0.99)的检验准确性。然而,大多数论文存在高度偏倚风险。
深度学习研究在腹腔镜手术中有一定的应用潜力,但在方法学上存在局限性。临床医生可以通过提供标准化的视觉数据库和报告来推进 AI 在手术中的应用。