Suppr超能文献

一种通过诊断性腹腔镜检查预测卵巢癌治疗结果的开创性人工智能工具。

A pioneering artificial intelligence tool to predict treatment outcomes in ovarian cancer via diagnostic laparoscopy.

作者信息

Ma Xiaotian, Hsu Yu-Chun, Asare Amma, Zhang Kai, Glassman Deanna, Handley Katelyn F, Foster Katherine, Sharma Khwahish, Westin Shannon, Jazaeri Amir, Fleming Nicole D, Bhattacharya Pratip K, Jiang Xiaoqian, Sood Anil K, Shams Shayan

机构信息

McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.

Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Sci Rep. 2025 Apr 25;15(1):14437. doi: 10.1038/s41598-025-98434-w.

Abstract

Ovarian cancer is associated with high rates of patient mortality and morbidity. Laparoscopic assessment of tumor localization can be used for treatment planning in newly diagnosed high-grade serous ovarian carcinoma (HGSOC). While spread to multiple intra-abdominal areas is correlated with worse outcomes, whether other morphological tumor differences are also associated with patient outcomes is unknown. Given the large volume of visual information in laparoscopic videos, we investigated whether deep-learning models can capture implicit features and predict treatment outcomes. We developed a novel deep-learning framework using pre-treatment laparoscopic images to assess clinical outcomes following upfront standard treatment, defined as short progression-free survival (PFS) (< 8 months) or long PFS (> 12 months). The deep-learning framework consisted of contrastive pre-training to capture morphological features of images and a location-aware transformer to predict patient-level treatment outcomes. We trained and extensively evaluated the model using cross-validation and analyzed the extracted features via UMAP visualizations and Grad-CAM saliency maps. The model reached an AUROC of 0.819 (± 0.119) on fivefold cross-validation and an out-of-fold AUROC of 0.807 on the whole dataset, successfully discriminating between patients with short PFS and long PFS using only laparoscopic images. Our approach demonstrates the potential of deep learning to simplify HGSOC triage and improve early treatment planning by accurately stratifying the patients based on minimally invasive laparoscopy at the diagnostic stage.

摘要

卵巢癌与患者的高死亡率和高发病率相关。腹腔镜评估肿瘤定位可用于新诊断的高级别浆液性卵巢癌(HGSOC)的治疗规划。虽然扩散到多个腹腔内区域与较差的预后相关,但其他肿瘤形态学差异是否也与患者预后相关尚不清楚。鉴于腹腔镜视频中有大量视觉信息,我们研究了深度学习模型是否能够捕捉隐含特征并预测治疗结果。我们开发了一种新颖的深度学习框架,使用治疗前的腹腔镜图像来评估 upfront 标准治疗后的临床结果,upfront 标准治疗定义为短无进展生存期(PFS)(<8个月)或长PFS(>12个月)。该深度学习框架包括用于捕捉图像形态特征的对比预训练和用于预测患者水平治疗结果的位置感知变换器。我们使用交叉验证对模型进行训练和广泛评估,并通过UMAP可视化和Grad-CAM显著性图分析提取的特征。该模型在五折交叉验证中的AUROC为0.819(±0.119),在整个数据集上的折外AUROC为0.807,仅使用腹腔镜图像就能成功区分短PFS和长PFS的患者。我们的方法证明了深度学习在简化HGSOC分类和通过在诊断阶段基于微创腹腔镜检查准确分层患者来改善早期治疗规划方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5444/12032350/a073090c34d4/41598_2025_98434_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验