Suppr超能文献

估算儿童和成人眼屈光力计算的主平面位置。

Estimating principal plane positions for ocular power calculations in children and adults.

机构信息

Visual Optics Lab Antwerp (VOLANTIS), Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium.

Department of Medicine and Health Sciences, Antwerp University, Wilrijk, Belgium.

出版信息

Ophthalmic Physiol Opt. 2021 Mar;41(2):409-413. doi: 10.1111/opo.12781. Epub 2021 Jan 5.

Abstract

PURPOSE

To develop an age-dependent model to estimate the positions of the ocular and lenticular principal planes (pps) for use in ocular and axial power calculations.

METHODS

Ocular power of the eye (P ) and axial power (P ) were calculated based on previously published average data of the ocular biometry and refraction in newborn infants, children and adults, as well as the associated pp positions. Next, regressions of the pp positions were made as a function of the logarithm of age, which were subsequently used to estimate P and P . These regression-based estimates were compared with the original data for validation. Finally, this procedure was repeated using the Atchison myopic eye model to determine the influence of myopia on the regression estimates.

RESULTS

In adults, the corneal pps almost coincide at 0.058 mm in front of the cornea. The first lenticular pp position relative to the corneal apex is described by the equation: 5.809 - 0.697·exp(-0.211·Age) (r  = 0.96), and the second lenticular pp by 6.026 - 0.684·exp(-0.232·Age) (r  = 0.95). The first ocular pp position relative to the corneal apex is at 0.293·exp(-0.232·Age) - 2.2·10 ·Age + 1.723 (r  = 0.99) and the second ocular pp is located at 0.392·exp(-0.181·Age) - 2.4·10 ·Age + 2.093 (r  = 0.99). Estimates of P and P derived from these regressions led to minor differences from the original values (0.00 ± 0.06D and 0.00 ± 0.10D, respectively). These errors were not affected by ocular refraction between -10D and 0D, with errors of + 0.12 ± 0.00D and -0.02 ± 0.05D for P and P , respectively.

CONCLUSION

The proposed regression models of the pp positions are sufficiently accurate to estimate P and P reliably. Interestingly, although the adult lens undergoes considerable physiological changes, its pps remain fixed with respect to the corneal apex.

摘要

目的

开发一种年龄相关的模型,用于估计眼球和晶状体主平面(pp)的位置,以便于眼球和轴向屈光力的计算。

方法

根据新生儿、儿童和成年人眼球生物测量和屈光度的已发表平均数据,以及相关的 pp 位置,计算眼球屈光力(P)和轴向屈光力(P)。接下来,对 pp 位置进行了以年龄对数为函数的回归,然后用这些回归来估计 P 和 P。为了验证,将基于回归的估计与原始数据进行了比较。最后,使用 Atchison 近视眼模型重复此过程,以确定近视对回归估计的影响。

结果

在成年人中,角膜 pp 在角膜前 0.058 毫米处几乎重合。第一个晶状体 pp 相对于角膜顶点的位置可以用以下方程描述:5.809-0.697·exp(-0.211·Age)(r=0.96),第二个晶状体 pp 用 6.026-0.684·exp(-0.232·Age)(r=0.95)表示。第一个眼球 pp 相对于角膜顶点的位置为 0.293·exp(-0.232·Age)-2.2·10·Age+1.723(r=0.99),第二个眼球 pp 位于 0.392·exp(-0.181·Age)-2.4·10·Age+2.093(r=0.99)。从这些回归中得出的 P 和 P 的估计值与原始值相比差异很小(分别为 0.00±0.06D 和 0.00±0.10D)。这些误差不受 -10D 至 0D 之间的眼球屈光的影响,P 和 P 的误差分别为+0.12±0.00D 和-0.02±0.05D。

结论

所提出的 pp 位置回归模型足够准确,可以可靠地估计 P 和 P。有趣的是,尽管成年人的晶状体经历了相当大的生理变化,但它的 pp 相对于角膜顶点保持固定。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验