Holladay J T
University of Texas Medical School, Houston, USA.
J Cataract Refract Surg. 1997 Nov;23(9):1356-70. doi: 10.1016/s0886-3350(97)80115-0.
To provide a method and values that facilitate standardization of constants for ultrasonic biometry, keratometry, and intraocular lens (IOL) power calculations.
University of Texas Medical School, Houston, Texas, USA.
Keratometry and ultrasonic biometry provide the two measured input variables for the six variable vergence equations used to calculate the appropriate IOL power for a specific patient with a cataract. A review of the literature reflecting the past 156 years of research and development reveals the appropriate index of refraction to be used with the keratometer for net optical corneal power, the location of the principal planes of the cornea, the nominal value for retinal thickness, and the appropriate velocities for ultrasonic measurement of the axial length. The relationship of the thick IOL to the thin IOL is derived along with the physical location of the thick lens. Two methods are described that provide the best IOL constant to be used by a manufacturer to minimize the prediction error for a surgeon using the lens for the first time. The formulas for phakic IOLs and secondary piggyback IOLs are also derived and applied to methods described above for standard IOLs.
Using a standardized net index of refraction of 4/3 for the cornea eliminates a variability of 0.56 diopter (D) in the predicted refraction. Using a standardized 1532 m/s velocity for axial length measurements and adding a value of 0.28 mm reduces the tolerance of axial length measurements to +/-0.03 mm for any length eye. The physical location of the thick IOL's secondary principal plane must be anterior to the thin lens equivalent by approximately the separation of the principal planes of the thick lens. For biconvex poly(methyl methacrylate) IOLs, the separation in the principal planes is approximately 0.10 mm. Using these relationships, the physical position of the thick lens within the eye can be used to confirm the lens constant for any IOL style.
Standardizing the constants for keratometry, ultrasonic biometry, and IOL power calculations can significantly improve the predictability of refractive outcomes. Back-calculating and physically measuring the position of the lens within the eye can provide surgeons with an initial lens constant known to have a standard error of the mean of +/-0.05 mm (+/-0.10 D). Other parameters such as the cardinal points of a lens, the shape factor, the lens-haptic plane, and the center lens thickness would allow further refinement of IOL power calculations.
提供一种方法和数值,以促进超声生物测量、角膜曲率测量及人工晶状体(IOL)屈光度计算中常数的标准化。
美国得克萨斯州休斯敦市得克萨斯大学医学院。
角膜曲率测量和超声生物测量为用于计算特定白内障患者合适IOL屈光度的六个变量的屈光力方程提供两个测量输入变量。回顾过去156年的研发文献,得出用于净角膜光学屈光力的角膜曲率计的合适折射率、角膜主平面的位置、视网膜厚度的标称值以及轴向长度超声测量的合适速度。推导厚IOL与薄IOL的关系以及厚晶状体的物理位置。描述了两种方法,可为制造商提供最佳IOL常数,以尽量减少首次使用该晶状体的外科医生的预测误差。还推导了有晶状体眼IOL和二期背负式IOL的公式,并将其应用于上述标准IOL的方法。
使用标准化的角膜净折射率4/3可消除预测屈光不正中0.56屈光度(D)的变异性。使用标准化的1532 m/s轴向长度测量速度并加上0.28 mm的值,可将任何眼轴长度的轴向长度测量公差降低至±0.03 mm。厚IOL的第二主平面的物理位置必须比薄晶状体等效物靠前约厚晶状体主平面的间距。对于双凸聚甲基丙烯酸甲酯IOL,主平面的间距约为0.10 mm。利用这些关系,厚晶状体在眼内的物理位置可用于确定任何IOL样式的晶状体常数。
角膜曲率测量、超声生物测量及IOL屈光度计算常数的标准化可显著提高屈光结果的可预测性。通过反向计算和物理测量晶状体在眼内的位置,可为外科医生提供已知平均标准误差为±0.05 mm(±0.10 D)的初始晶状体常数。其他参数,如晶状体的基点、形状因子、晶状体-袢平面和晶状体中心厚度,将使IOL屈光度计算得到进一步完善。