Suppr超能文献

FLDNet:用于 EEG 情绪识别的帧级蒸馏神经网络。

FLDNet: Frame-Level Distilling Neural Network for EEG Emotion Recognition.

出版信息

IEEE J Biomed Health Inform. 2021 Jul;25(7):2533-2544. doi: 10.1109/JBHI.2021.3049119. Epub 2021 Jul 27.

Abstract

Based on the current research on EEG emotion recognition, there are some limitations, such as hand-engineered features, redundant and meaningless signal frames and the loss of frame-to-frame correlation. In this paper, a novel deep learning framework is proposed, named the frame-level distilling neural network (FLDNet), for learning distilled features from the correlations of different frames. A layer named the frame gate is designed to integrate weighted semantic information on multiple frames to remove redundant and meaningless signal frames. A triple-net structure is introduced to distill the learned features net by net to replace the hand-engineered features with professional knowledge. Specifically, one neural network is normally trained for several epochs. Then, a second network of the same structure will be initialized again to learn the extracted features from the frame gate of the first neural network based on the output of the first net. Similarly, the third net improves the features based on the frame gate of the second network. To utilize the representation ability of the triple neural network, an ensemble layer is conducted to integrate the discriminative ability of the proposed framework for final decisions. Consequently, the proposed FLDNet provides an effective method for capturing the correlation between different frames and automatically learn distilled high-level features for emotion recognition. The experiments are carried out in a subject-independent emotion recognition task on public emotion datasets of DEAP and DREAMER benchmarks, which have demonstrated the effectiveness and robustness of the proposed FLDNet.

摘要

基于目前的 EEG 情绪识别研究,存在一些局限性,例如手工特征、冗余和无意义的信号帧以及帧间相关性的丢失。本文提出了一种新的深度学习框架,称为帧级蒸馏神经网络(FLDNet),用于从不同帧的相关性中学习提取特征。设计了一个名为帧门的层,用于整合多个帧上的加权语义信息,以去除冗余和无意义的信号帧。引入了三网结构,通过层层蒸馏来提取特征,用专业知识代替手工特征。具体来说,一个神经网络通常要训练几个时期。然后,再次初始化相同结构的第二个网络,根据第一个网络的输出,从第一个网络的帧门中学习提取的特征。同样,第三个网络基于第二个网络的帧门来改进特征。为了利用三神经网络的表示能力,采用集成层将框架的判别能力集成到最终决策中。因此,所提出的 FLDNet 为捕捉不同帧之间的相关性并自动学习用于情绪识别的提取的高层特征提供了一种有效的方法。在 DEAP 和 DREAMER 基准的公共情绪数据集上进行的独立于主题的情绪识别任务的实验表明了所提出的 FLDNet 的有效性和鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验