Ding Shihang, Wang Kaixuan, Jiang Wenhao, Xu Cong, Bo Hongjian, Ma Lin, Li Haifeng
Faculty of Computing, Harbin Institute of Technology, Harbin, China.
Shenzhen Academy of Aerospace Technology, Shenzhen, China.
Front Psychiatry. 2025 Jul 21;16:1633860. doi: 10.3389/fpsyt.2025.1633860. eCollection 2025.
Emotion recognition based on electroencephalogram (EEG) signals has shown increasing application potential in fields such as brain-computer interfaces and affective computing. However, current graph neural network models rely on predefined fixed adjacency matrices during training, which imposes certain limitations on the model's adaptability and feature expressiveness.
In this study, we propose a novel EEG emotion recognition framework known as the Dynamic Graph Attention Network (DGAT). This framework dynamically learns the relationships between different channels by utilizing dynamic adjacency matrices and a multi-head attention mechanism, allowing for the parallel computation of multiple attention heads. This approach reduces reliance on specific adjacency structures while enabling the model to learn information in different subspaces, significantly improving the accuracy of emotion recognition from EEG signals.
Experiments conducted on the EEG emotion datasets SEED and DEAP demonstrate that DGAT achieves higher emotion classification accuracy in both subject-dependent and subject-independent scenarios compared to other models. These results indicate that the proposed model effectively captures dynamic changes, thereby enhancing the accuracy and practicality of emotion recognition.
DGAT holds significant academic and practical value in the analysis of emotional EEG signals and applications related to other physiological signal data.
基于脑电图(EEG)信号的情感识别在脑机接口和情感计算等领域展现出越来越大的应用潜力。然而,当前的图神经网络模型在训练过程中依赖预定义的固定邻接矩阵,这对模型的适应性和特征表现力施加了一定限制。
在本研究中,我们提出了一种新颖的EEG情感识别框架,称为动态图注意力网络(DGAT)。该框架通过利用动态邻接矩阵和多头注意力机制动态学习不同通道之间的关系,允许多个注意力头并行计算。这种方法减少了对特定邻接结构的依赖,同时使模型能够在不同子空间中学习信息,显著提高了从EEG信号中进行情感识别的准确性。
在EEG情感数据集SEED和DEAP上进行的实验表明,与其他模型相比,DGAT在依赖个体和不依赖个体的场景中均实现了更高的情感分类准确率。这些结果表明,所提出的模型有效地捕捉了动态变化,从而提高了情感识别的准确性和实用性。
DGAT在情感EEG信号分析以及与其他生理信号数据相关的应用中具有重要的学术和实用价值。