Suppr超能文献

构建并分析基于随机森林和人工神经网络的心力衰竭联合诊断模型。

Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure.

机构信息

Peking University Fifth School of Clinical Medicine, Beijing 100730, P.R. China.

Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China.

出版信息

Aging (Albany NY). 2020 Dec 26;12(24):26221-26235. doi: 10.18632/aging.202405.

Abstract

Heart failure is a global health problem that affects approximately 26 million people worldwide. As conventional diagnostic techniques for heart failure have been in practice with various limitations, it is necessary to develop novel diagnostic models to supplement existing methods. With advances and improvements in gene sequencing technology in recent years, more heart failure-related genes have been identified. Using existing gene expression data in the Gene Expression Omnibus (GEO) database, we screened differentially expressed genes (DEGs) of heart failure and identified six key genes (, , , , , and ) by random forest classifier. Of these genes, , , and have never been associated with heart failure. We also successfully constructed a new diagnostic model of heart failure using an artificial neural network and verified its diagnostic efficacy in public datasets.

摘要

心力衰竭是一个全球性的健康问题,影响着全球约 2600 万人。由于传统的心力衰竭诊断技术存在各种局限性,因此有必要开发新的诊断模型来补充现有方法。近年来,随着基因测序技术的进步和改进,已经发现了更多与心力衰竭相关的基因。我们使用基因表达综合数据库(GEO)中的现有基因表达数据,通过随机森林分类器筛选出心力衰竭的差异表达基因(DEGs),并鉴定出六个关键基因(、、、、、和)。其中,、、和 与心力衰竭从未有过关联。我们还成功地使用人工神经网络构建了一个新的心力衰竭诊断模型,并在公共数据集上验证了其诊断效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60c6/7803554/0e8c9bfb4ef3/aging-12-202405-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验