Suppr超能文献

COVID-19:利用分布式机器学习从推特阿拉伯语数据中检测政府大流行病措施和公众关切。

COVID-19: Detecting Government Pandemic Measures and Public Concerns from Twitter Arabic Data Using Distributed Machine Learning.

机构信息

Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

High Performance Computing Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

出版信息

Int J Environ Res Public Health. 2021 Jan 1;18(1):282. doi: 10.3390/ijerph18010282.

Abstract

Today's societies are connected to a level that has never been seen before. The COVID-19 pandemic has exposed the vulnerabilities of such an unprecedently connected world. As of 19 November 2020, over 56 million people have been infected with nearly 1.35 million deaths, and the numbers are growing. The state-of-the-art social media analytics for COVID-19-related studies to understand the various phenomena happening in our environment are limited and require many more studies. This paper proposes a software tool comprising a collection of unsupervised Latent Dirichlet Allocation (LDA) machine learning and other methods for the analysis of Twitter data in Arabic with the aim to detect government pandemic measures and public concerns during the COVID-19 pandemic. The tool is described in detail, including its architecture, five software components, and algorithms. Using the tool, we collect a dataset comprising 14 million tweets from the Kingdom of Saudi Arabia (KSA) for the period 1 February 2020 to 1 June 2020. We detect 15 government pandemic measures and public concerns and six macro-concerns (economic sustainability, social sustainability, etc.), and formulate their information-structural, temporal, and spatio-temporal relationships. For example, we are able to detect the timewise progression of events from the public discussions on COVID-19 cases in mid-March to the first curfew on 22 March, financial loan incentives on 22 March, the increased quarantine discussions during March-April, the discussions on the reduced mobility levels from 24 March onwards, the blood donation shortfall late March onwards, the government's 9 billion SAR (Saudi Riyal) salary incentives on 3 April, lifting the ban on five daily prayers in mosques on 26 May, and finally the return to normal government measures on 29 May 2020. These findings show the effectiveness of the Twitter media in detecting important events, government measures, public concerns, and other information in both time and space with no earlier knowledge about them.

摘要

当今社会的联系程度前所未有。COVID-19 大流行暴露了如此空前互联世界的脆弱性。截至 2020 年 11 月 19 日,已有超过 5600 万人感染,近 135 万人死亡,且数字还在不断增加。目前用于 COVID-19 相关研究的社交媒体分析技术还很先进,无法充分了解我们所处环境中发生的各种现象,因此需要开展更多的研究。本文提出了一个软件工具,该工具包含一组无监督的潜在狄利克雷分配(LDA)机器学习和其他方法,用于分析阿拉伯语的 Twitter 数据,目的是检测 COVID-19 大流行期间的政府大流行措施和公众关注。详细描述了该工具,包括其架构、五个软件组件和算法。使用该工具,我们从沙特阿拉伯王国(KSA)收集了一个包含 1400 万条推文的数据集,时间范围为 2020 年 2 月 1 日至 2020 年 6 月 1 日。我们检测到 15 项政府大流行措施和公众关注,以及 6 项宏观关注点(经济可持续性、社会可持续性等),并构建了它们的信息结构、时间和时空关系。例如,我们能够从 3 月中旬有关 COVID-19 病例的公众讨论中检测到事件的时间进展,然后是 3 月 22 日的首次宵禁,3 月 22 日的金融贷款激励措施,3 月至 4 月期间的隔离讨论增加,3 月 24 日起流动性水平降低的讨论,3 月底血液供应短缺,4 月 3 日政府 90 亿沙特里亚尔(SAR)的工资激励措施,5 月 26 日解除清真寺每日五次礼拜的禁令,最后是 2020 年 5 月 29 日恢复正常政府措施。这些发现表明,Twitter 媒体在检测时间和空间上的重要事件、政府措施、公众关注和其他信息方面具有有效性,且无需事先了解这些信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef12/7795453/5ec8c27444d4/ijerph-18-00282-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验