Xie Yao, Huang Mo, Zhang Yuanyuan, Duan Tao, Wang Changyuan
Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Sensors (Basel). 2021 Jan 3;21(1):276. doi: 10.3390/s21010276.
In conformal array radar, due to the directivity of antennas, the responses of the echo signals between different antennas are distinct, and some antennas cannot even receive the target echo signal. These phenomena significantly affect the accuracy of direction-of-arrival (DOA) estimation. To implement accurate DOA estimation in a conformal uniform circular array (UCA) composed of directional antennas, the two-stage fast DOA estimation algorithm is proposed. In the pre-processing stage, multi-target decoupling and target detection are mainly used to obtain the targets' range bin indexes set; in the rough-precise DOA estimation stage, the amplitude and phase information of each antenna are used for rough DOA estimation and precise DOA estimation, respectively. Based on simulation and actual anechoic chamber radar experiments, and through quantitative analyses of the accuracy, validity and elapsed time of the two-stage fast DOA estimation algorithm compared with the directional antenna MUSIC (DA-MUSIC), sub-array MUSIC (S-MUSIC) and Capon-like algorithms, results indicate that the two-stage fast DOA estimation algorithm can rapidly and accurately estimate DOAs in a multi-target scenario without the range-angle pair-matching procedure. Lower computational complexity and superior estimation accuracy provide the two-stage fast DOA estimation algorithm a broader application prospect in the practical engineering field.
在共形阵列雷达中,由于天线的方向性,不同天线之间的回波信号响应不同,甚至有些天线无法接收到目标回波信号。这些现象显著影响波达方向(DOA)估计的准确性。为了在由定向天线组成的共形均匀圆形阵列(UCA)中实现准确的DOA估计,提出了两阶段快速DOA估计算法。在预处理阶段,主要利用多目标解耦和目标检测来获取目标的距离单元索引集;在粗精DOA估计阶段,分别利用各天线的幅度和相位信息进行粗DOA估计和精DOA估计。基于仿真和实际暗室雷达实验,并通过对两阶段快速DOA估计算法与定向天线MUSIC(DA-MUSIC)、子阵列MUSIC(S-MUSIC)和类Capon算法的准确性、有效性和耗时进行定量分析,结果表明,两阶段快速DOA估计算法可以在多目标场景中快速准确地估计DOA,而无需距离-角度对匹配过程。较低的计算复杂度和优越的估计精度为两阶段快速DOA估计算法在实际工程领域提供了更广阔的应用前景。