Mohamed Reda M, Ismail Adel A, Kadi Mohammad W, Alresheedi Ajayb S, Mkhalid Ibraheem A
Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Kingdom of Saudi Arabia.
Advanced Materials Department, Central Metallurgical R&D Institute, CMRDI, P.O. Box 87, Helwan, Cairo 11421, Egypt.
ACS Omega. 2020 Dec 16;5(51):33269-33279. doi: 10.1021/acsomega.0c04969. eCollection 2020 Dec 29.
Fabrication of 3D mesoporous AgO-ZnO heterojunctions at varying AgO contents has been achieved through poly(ethylene glycol)--poly(propylene glycol)--poly(ethylene glycol) (Pluronic F-108) as the structure-directing agent for the first time. The mesoporous AgO-ZnO nanocomposites exhibited a mesoporous structure, which revealed a large pore volume and high surface area. The photocatalytic efficiency over mesoporous AgO-ZnO nanocomposites for tetracycline (TC) compared with that over commercial P-25 and pristine ZnO NPs through the visible light exposure was studied. Mesoporous 1.5% AgO-ZnO nanocomposites indicated the highest degradation efficiency of 100% of TC during 120 min of the visible light exposure compared with 5% and 10% for pristine ZnO NPs and commercial P-25, respectively. The TC degradation rate took place much rapidly over 1.5% AgO-ZnO nanocomposites (0.798 μmol L min) as compared to either commercial P-25 (0.097 μmol L min) or ZnO NPs (0.035 μmol L min). The mesoporous 1.5% AgO-ZnO nanocomposite revealed the highest degradation rate among all synthesized samples, and it was 23 and 8 orders of magnitudes greater than those of pristine ZnO NPs and P-25, respectively. The photoluminescence and transient photocurrent intensity behaviors have been discussed to explore photocatalysis mechanisms. It is anticipated that the present work will contribute some suggestions for understanding other heterojunctions with outstanding behaviors.
首次通过聚(乙二醇)-聚(丙二醇)-聚(乙二醇)(普朗尼克F-108)作为结构导向剂,制备了不同AgO含量的3D介孔AgO-ZnO异质结。介孔AgO-ZnO纳米复合材料呈现出介孔结构,具有大孔体积和高比表面积。通过可见光照射,研究了介孔AgO-ZnO纳米复合材料对四环素(TC)的光催化效率,并与商用P-25和原始ZnO纳米颗粒进行了比较。介孔1.5% AgO-ZnO纳米复合材料在可见光照射120分钟内对TC的降解效率最高,达到100%,而原始ZnO纳米颗粒和商用P-25的降解效率分别为5%和10%。与商用P-25(0.097 μmol L min)或ZnO纳米颗粒(0.035 μmol L min)相比,1.5% AgO-ZnO纳米复合材料上的TC降解速率要快得多(0.798 μmol L min)。介孔1.5% AgO-ZnO纳米复合材料在所有合成样品中显示出最高的降解速率,分别比原始ZnO纳米颗粒和P-25的降解速率高23个和8个数量级。讨论了光致发光和瞬态光电流强度行为以探索光催化机理。预计本工作将为理解其他具有优异性能的异质结提供一些建议。