Suppr超能文献

调节溶酶体pH值:分子与纳米级材料设计视角

Modulating lysosomal pH: a molecular and nanoscale materials design perspective.

作者信息

Zeng Jialiu, Shirihai Orian S, Grinstaff Mark W

机构信息

Department of Biomedical Engineering, Boston University, Boston, MA 02215.

Department of Neurology, School of Medicine, Yale University, New Haven, CT 06511.

出版信息

J Life Sci (Westlake Village). 2020 Dec;2(4):25-37. doi: 10.36069/jols/20201204.

Abstract

Lysosomes, membrane-bound organelles, play important roles in cellular processes including endocytosis, phagocytosis, and autophagy. Lysosomes maintain cellular homeostasis by generating a highly acidic environment of pH 4.5 - 5.0 and by housing hydrolytic enzymes that degrade engulfed biomolecules. Impairment of lysosomal function, especially in its acidification, is a driving force in the pathogenesis of diseases including neurodegeneration, cancer, metabolic disorders, and infectious diseases. Therefore, lysosomal pH is an attractive and targetable site for therapeutic intervention. Currently, there is a dearth of strategies or materials available to specifically modulate lysosomal acidification. This review focuses on the key aspects of how lysosomal pH is implicated in various diseases and discusses design strategies and molecular or nanoscale agents for lysosomal pH modulation, with the ultimate goal of developing novel therapeutic solutions.

摘要

溶酶体是膜结合细胞器,在包括内吞作用、吞噬作用和自噬作用在内的细胞过程中发挥重要作用。溶酶体通过产生pH值为4.5 - 5.0的高度酸性环境以及容纳降解被吞噬生物分子的水解酶来维持细胞内稳态。溶酶体功能的损害,尤其是其酸化过程的损害,是包括神经退行性疾病、癌症、代谢紊乱和传染病在内的多种疾病发病机制中的一个驱动因素。因此,溶酶体pH值是一个有吸引力且可靶向的治疗干预位点。目前,缺乏可用于特异性调节溶酶体酸化的策略或材料。本综述重点关注溶酶体pH值与各种疾病的关联的关键方面,并讨论用于溶酶体pH值调节的设计策略以及分子或纳米级试剂,最终目标是开发新的治疗方案。

相似文献

1
Modulating lysosomal pH: a molecular and nanoscale materials design perspective.
J Life Sci (Westlake Village). 2020 Dec;2(4):25-37. doi: 10.36069/jols/20201204.
2
Lysosomal Biology in Cancer.
Methods Mol Biol. 2017;1594:293-308. doi: 10.1007/978-1-4939-6934-0_19.
3
The lysosome: from waste bag to potential therapeutic target.
J Mol Cell Biol. 2013 Aug;5(4):214-26. doi: 10.1093/jmcb/mjt022.
4
The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases.
Transl Neurodegener. 2020 May 11;9(1):17. doi: 10.1186/s40035-020-00196-0.
6
Lipids and lysosomes.
Curr Drug Metab. 2012 Dec;13(10):1371-87. doi: 10.2174/138920012803762684.
7
Phenotypic Screening Using High-Content Imaging to Identify Lysosomal pH Modulators in a Neuronal Cell Model.
ACS Chem Neurosci. 2022 May 18;13(10):1505-1516. doi: 10.1021/acschemneuro.1c00804. Epub 2022 May 6.
8
Lysosomal LAMP proteins regulate lysosomal pH by direct inhibition of the TMEM175 channel.
Mol Cell. 2023 Jul 20;83(14):2524-2539.e7. doi: 10.1016/j.molcel.2023.06.004. Epub 2023 Jun 29.
10
Lysosome Function in Cardiovascular Diseases.
Cell Physiol Biochem. 2021 May 22;55(3):277-300. doi: 10.33594/000000373.

引用本文的文献

2
Biodegradable Piezoelectric Micro- and Nanomaterials for Regenerative Medicine, Targeted Therapy, and Microrobotics.
Small Sci. 2025 Jan 28;5(4):2400439. doi: 10.1002/smsc.202400439. eCollection 2025 Apr.
3
Targeting phospholipase PLAG-15 promotes healthy aging in via lysosomal-related genes.
iScience. 2025 Jun 16;28(7):112880. doi: 10.1016/j.isci.2025.112880. eCollection 2025 Jul 18.
5
Efferocytosis in tissue engineering: A comprehensive review of emerging therapeutic strategies for enhanced tissue repair and regeneration.
Bioact Mater. 2025 Jun 9;52:155-181. doi: 10.1016/j.bioactmat.2025.05.026. eCollection 2025 Oct.
6
Cellular Uptake and Trafficking of Lipid Nanocarriers Using High-Resolution Electron Microscopy.
AAPS PharmSciTech. 2025 Feb 26;26(3):71. doi: 10.1208/s12249-025-03061-3.
7
Therapeutic targeting of obesity-induced neuroinflammation and neurodegeneration.
Front Endocrinol (Lausanne). 2025 Jan 17;15:1456948. doi: 10.3389/fendo.2024.1456948. eCollection 2024.
8
The Role of Retinoic-Acid-Related Orphan Receptor (RORs) in Cellular Homeostasis.
Int J Mol Sci. 2024 Oct 22;25(21):11340. doi: 10.3390/ijms252111340.
9
Comprehensive Overview of Alzheimer's Disease: Etiological Insights and Degradation Strategies.
Int J Mol Sci. 2024 Jun 24;25(13):6901. doi: 10.3390/ijms25136901.

本文引用的文献

1
Biodegradable PLGA nanoparticles restore lysosomal acidity and protect neural PC-12 cells against mitochondrial toxicity.
Ind Eng Chem Res. 2019 Aug 7;58(31):13910-13917. doi: 10.1021/acs.iecr.9b02003. Epub 2019 Jul 16.
2
Synthesis and biological effect of lysosome-targeting fluorescent anion transporters with enhanced anionophoric activity.
Bioorg Med Chem Lett. 2020 Oct 1;30(19):127461. doi: 10.1016/j.bmcl.2020.127461. Epub 2020 Aug 2.
3
Lysosome-targeting chimaeras for degradation of extracellular proteins.
Nature. 2020 Aug;584(7820):291-297. doi: 10.1038/s41586-020-2545-9. Epub 2020 Jul 29.
4
A near-infrared light-mediated cleavable linker strategy using the heptamethine cyanine chromophore.
Methods Enzymol. 2020;641:245-275. doi: 10.1016/bs.mie.2020.04.043. Epub 2020 Jun 15.
6
Hydroxychloroquine-loaded hollow mesoporous silica nanoparticles for enhanced autophagy inhibition and radiation therapy.
J Control Release. 2020 Sep 10;325:100-110. doi: 10.1016/j.jconrel.2020.06.025. Epub 2020 Jul 1.
7
Discovery of nitazoxanide-based derivatives as autophagy activators for the treatment of Alzheimer's disease.
Acta Pharm Sin B. 2020 Apr;10(4):646-666. doi: 10.1016/j.apsb.2019.07.006. Epub 2019 Jul 29.
8
Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.
Int J Antimicrob Agents. 2020 Jul;56(1):105949. doi: 10.1016/j.ijantimicag.2020.105949. Epub 2020 Mar 20.
9
Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro.
Cell Discov. 2020 Mar 18;6:16. doi: 10.1038/s41421-020-0156-0. eCollection 2020.
10
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验