Liu Ru-Shuai, Shi Xiao-Dong, Wang Cheng-Tong, Gao Yu-Zhou, Xu Shuang, Hao Guang-Ping, Chen Shaoyun, Lu An-Hui
State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
ChemSusChem. 2021 Mar 22;14(6):1428-1471. doi: 10.1002/cssc.202002677. Epub 2021 Feb 2.
The atmospheric CO concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO capture technologies. One of the attractive technologies is physical adsorption-based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal-organic frameworks (MOFs) and covalent-organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot-scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption-based CO separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.
大气中的一氧化碳(CO)浓度持续快速上升,目前暂时达到了创纪录的416 ppm的高位。这就需要先进的CO捕集技术。其中一种颇具吸引力的技术是基于物理吸附的分离方法,该方法具有易于再生和高循环稳定性的特点,从而降低了能耗和成本。大量关于这一主题的研究可见于日益增多的科技文献中。其进展涵盖了从新型多孔吸附剂的创新到实际分离操作等多个方面。主要的CO捕集材料包括工业上应用最广泛的多孔碳、沸石、活性氧化铝、介孔二氧化硅,以及新出现的金属有机框架材料(MOFs)和共价有机框架材料(COFs)。本文首先讨论了影响CO捕集能力、选择性和可回收性的关键内在特性,如孔结构、表面化学性质、优选的吸附位点以及其他结构特征。与工业相关的变量,如吸附剂的粒径、机械强度、吸附热管理以及其他技术进展同样重要,在从实验室规模和中试规模扩大到示范规模和商业规模时甚至更为关键。因此,我们旨在全面介绍基于吸附的CO分离技术,内容涵盖从吸附剂设计、内在性质评估到性能评估,不仅包括理想平衡条件下的情况,还包括实际变压吸附过程中的情况。