Gooijer S, Capelo-Avilés S, Sharma S, Giancola S, Galán-Mascaros J R, Vlugt T J H, Dubbeldam D, Vicent-Luna J M, Calero S
Materials Simulation and Modelling, Department of Applied Physics and Science Education, Eindhoven University of Technology PO Box 513 5600MB Eindhoven The Netherlands
Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 Tarragona 43007 Spain.
J Mater Chem A Mater. 2025 Apr 29. doi: 10.1039/d5ta01362c.
Experimental screening of Metal Organic Frameworks (MOFs) for separation applications can be costly and time-consuming. Computational methods can provide many benefits in this process, as expensive compounds and a wide range of operating conditions can be tested while crucial mechanistic insights are gained. TAMOF-1, a recently developed MOF, stands out for its exceptional stability, robustness and cost-effective synthesis. Its good CO uptake capacity makes it a promising agent for flue gas separation applications. In this work, we combine experiments with simulations at the atomistic and numerical level to investigate the adsorption and separation of CO and N. Using Monte Carlo simulations, we accurately reproduce experimental adsorption isotherms and elucidate the adsorption mechanisms. TAMOF-1 effectively separates CO from N because of preferential binding sites near Cu atoms. To assess separation performance in equilibrium at different conditions along the entire isotherm pressure range, adsorbed mole fractions, selectivities, and the trade-off between selectivity and uptake (TSN) are calculated. The dynamic separation performance is assessed by breakthrough experiments and numerical simulations, demonstrating efficient dynamic separation of CO and N, with CO being retained in the column.
对用于分离应用的金属有机框架材料(MOF)进行实验筛选可能成本高昂且耗时。在这个过程中,计算方法可以带来诸多益处,因为可以在获得关键的机理见解的同时,测试昂贵的化合物以及广泛的操作条件。TAMOF-1是一种最近开发的MOF,因其出色的稳定性、坚固性和经济高效的合成方法而脱颖而出。它良好的CO吸附能力使其成为烟道气分离应用的有前途的试剂。在这项工作中,我们将实验与原子和数值层面的模拟相结合,以研究CO和N的吸附与分离。通过蒙特卡罗模拟,我们准确地再现了实验吸附等温线并阐明了吸附机制。由于铜原子附近存在优先结合位点,TAMOF-1能有效地将CO与N分离。为了评估在整个等温线压力范围内不同条件下的平衡分离性能,计算了吸附摩尔分数、选择性以及选择性与吸附量之间的权衡(TSN)。通过穿透实验和数值模拟评估动态分离性能,结果表明CO和N能实现高效动态分离,CO被保留在柱中。