Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.
Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.
Am J Physiol Lung Cell Mol Physiol. 2021 Mar 1;320(3):L451-L466. doi: 10.1152/ajplung.00406.2020. Epub 2021 Jan 6.
Supplemental O (hyperoxia) is necessary for preterm infant survival but is associated with development of bronchial airway hyperreactivity and childhood asthma. Understanding early mechanisms that link hyperoxia to altered airway structure and function are key to developing advanced therapies. We previously showed that even moderate hyperoxia (50% O) enhances intracellular calcium ([Ca]) and proliferation of human fetal airway smooth muscle (fASM), thereby facilitating bronchoconstriction and remodeling. Here, we introduce cellular clock biology as a novel mechanism linking early oxygen exposure to airway biology. Peripheral, intracellular clocks are a network of transcription-translation feedback loops that produce circadian oscillations with downstream targets highly relevant to airway function and asthma. Premature infants suffer circadian disruption whereas entrainment strategies improve outcomes, highlighting the need to understand relationships between clocks and developing airways. We hypothesized that hyperoxia impacts clock function in fASM and that the clock can be leveraged to attenuate deleterious effects of O on the developing airway. We report that human fASM express core clock machinery (/BMAL1) that is responsive to dexamethasone (Dex) and altered by O. Disruption of the clock via siRNA-mediated or knockdown alters store-operated calcium entry (SOCE) and [Ca] response to histamine in hyperoxia. Effects of O on [Ca] are rescued by driving expression of clock proteins, via effects on the Ca channels IPR and Orai1. These data reveal a functional fASM clock that modulates [Ca] regulation, particularly in hyperoxia. Harnessing clock biology may be a novel therapeutic consideration for neonatal airway diseases following prematurity.
补充氧气(高氧)对于早产儿的存活是必要的,但与支气管气道高反应性和儿童哮喘的发展有关。了解将高氧与改变气道结构和功能联系起来的早期机制是开发先进治疗方法的关键。我们之前曾表明,即使是中度高氧(50%O)也会增强人胎儿气道平滑肌(fASM)的细胞内钙([Ca])和增殖,从而促进支气管收缩和重塑。在这里,我们引入细胞时钟生物学作为将早期氧气暴露与气道生物学联系起来的一种新机制。外周细胞时钟是一个转录-翻译反馈回路网络,产生具有与气道功能和哮喘高度相关的下游靶标的昼夜节律振荡。早产儿遭受昼夜节律中断,而同步策略改善了结果,这突出表明需要了解时钟与发育中的气道之间的关系。我们假设高氧会影响 fASM 中的时钟功能,并且可以利用时钟来减轻 O 对发育中的气道的有害影响。我们报告说,人 fASM 表达核心时钟机制(/BMAL1),对地塞米松(Dex)有反应,并受 O 改变。通过 siRNA 介导的 / 敲低破坏时钟会改变在高氧中储存操作的钙内流(SOCE)和 [Ca]对组胺的反应。通过影响 Ca 通道 IPR 和 Orai1,通过表达时钟蛋白来驱动时钟蛋白的表达,可挽救 O 对 [Ca]的影响。这些数据揭示了一种功能齐全的 fASM 时钟,可调节 [Ca]调节,特别是在高氧中。利用时钟生物学可能是治疗早产儿后新生儿气道疾病的一种新的治疗考虑因素。