Suppr超能文献

人胎气道平滑肌细胞的氧剂量反应性。

Oxygen dose responsiveness of human fetal airway smooth muscle cells.

机构信息

Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2012 Oct 15;303(8):L711-9. doi: 10.1152/ajplung.00037.2012. Epub 2012 Aug 24.

Abstract

Maintenance of blood oxygen saturation dictates supplemental oxygen administration to premature infants, but hyperoxia predisposes survivors to respiratory diseases such as asthma. Although much research has focused on oxygen effects on alveoli in the setting of bronchopulmonary dysplasia, the mechanisms by which oxygen affects airway structure or function relevant to asthma are still under investigation. We used isolated human fetal airway smooth muscle (fASM) cells from 18-20 postconceptual age lungs (canalicular stage) to examine oxygen effects on intracellular Ca(2+) (Ca(2+)) and cellular proliferation. fASM cells expressed substantial smooth muscle actin and myosin and several Ca(2+) regulatory proteins but not fibroblast or epithelial markers, profiles qualitatively comparable to adult human ASM. Fluorescence Ca(2+) imaging showed robust Ca(2+) responses to 1 μM acetylcholine (ACh) and 10 μM histamine (albeit smaller and slower than adult ASM), partly sensitive to zero extracellular Ca(2+). Compared with adult, fASM showed greater baseline proliferation. Based on this validation, we assessed fASM responses to 10% hypoxia through 90% hyperoxia and found enhanced proliferation at <60% oxygen but increased apoptosis at >60%, effects accompanied by appropriate changes in proliferative vs. apoptotic markers and enhanced mitochondrial fission at >60% oxygen. Ca(2+) responses to ACh were enhanced for <60% but blunted at >60% oxygen. These results suggest that hyperoxia has dose-dependent effects on structure and function of developing ASM, which could have consequences for airway diseases of childhood. Thus detrimental effects on ASM should be an additional consideration in assessing risks of supplemental oxygen in prematurity.

摘要

维持血氧饱和度需要给早产儿补充氧气,但高氧会使幸存者易患哮喘等呼吸道疾病。虽然大量研究集中在支气管肺发育不良背景下氧气对肺泡的影响,但氧气影响与哮喘相关的气道结构或功能的机制仍在研究中。我们使用来自 18-20 孕周(小管期)肺的分离的人胎儿气道平滑肌(fASM)细胞,研究了氧气对细胞内 Ca(2+)(Ca(2+))和细胞增殖的影响。fASM 细胞表达大量的平滑肌肌动蛋白和肌球蛋白以及几种 Ca(2+)调节蛋白,但不表达成纤维细胞或上皮细胞标志物,其表型与成人气道平滑肌相当。荧光 Ca(2+)成像显示,1 μM 乙酰胆碱(ACh)和 10 μM 组胺引起强烈的 Ca(2+)反应(尽管比成人气道平滑肌小且慢),部分对零细胞外 Ca(2+)敏感。与成人相比,fASM 显示出更高的基础增殖率。基于这一验证,我们评估了 fASM 对 10%低氧通过 90%高氧的反应,发现 <60%氧气时增殖增加,但 >60%氧气时凋亡增加,这些效应伴随着增殖与凋亡标志物的适当变化,以及 >60%氧气时线粒体分裂增加。ACh 引起的 Ca(2+)反应在 <60%氧气时增强,但在 >60%氧气时减弱。这些结果表明,高氧对发育中的气道平滑肌的结构和功能具有剂量依赖性的影响,这可能对儿童期的气道疾病产生影响。因此,在评估早产儿补充氧气的风险时,应将对气道平滑肌的不利影响作为额外的考虑因素。

相似文献

1
Oxygen dose responsiveness of human fetal airway smooth muscle cells.
Am J Physiol Lung Cell Mol Physiol. 2012 Oct 15;303(8):L711-9. doi: 10.1152/ajplung.00037.2012. Epub 2012 Aug 24.
2
Calcium-Sensing Receptor Contributes to Hyperoxia Effects on Human Fetal Airway Smooth Muscle.
Front Physiol. 2021 Mar 15;12:585895. doi: 10.3389/fphys.2021.585895. eCollection 2021.
3
Cellular clocks in hyperoxia effects on [Ca] regulation in developing human airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2021 Mar 1;320(3):L451-L466. doi: 10.1152/ajplung.00406.2020. Epub 2021 Jan 6.
4
Hydrogen sulfide, oxygen, and calcium regulation in developing human airway smooth muscle.
FASEB J. 2020 Sep;34(9):12991-13004. doi: 10.1096/fj.202001180R. Epub 2020 Aug 10.
5
cAMP-mediated secretion of brain-derived neurotrophic factor in developing airway smooth muscle.
Biochim Biophys Acta. 2015 Oct;1853(10 Pt A):2506-14. doi: 10.1016/j.bbamcr.2015.06.008. Epub 2015 Jun 22.
6
Soluble guanylate cyclase modulators blunt hyperoxia effects on calcium responses of developing human airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2015 Sep 15;309(6):L537-42. doi: 10.1152/ajplung.00232.2015. Epub 2015 Aug 7.
7
Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia.
Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L537-49. doi: 10.1152/ajplung.00050.2006. Epub 2006 Oct 27.
8
Calcium sensing receptor in developing human airway smooth muscle.
J Cell Physiol. 2019 Aug;234(8):14187-14197. doi: 10.1002/jcp.28115. Epub 2019 Jan 9.
9
Hyperoxia-induced Cellular Senescence in Fetal Airway Smooth Muscle Cells.
Am J Respir Cell Mol Biol. 2019 Jul;61(1):51-60. doi: 10.1165/rcmb.2018-0176OC.
10
Moderate hyperoxia induces extracellular matrix remodeling by human fetal airway smooth muscle cells.
Pediatr Res. 2017 Feb;81(2):376-383. doi: 10.1038/pr.2016.218. Epub 2016 Nov 3.

引用本文的文献

1
Mechanical stretch promotes sustained proliferation and inflammation in developing human airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2025 Aug 1;329(2):L296-L306. doi: 10.1152/ajplung.00070.2025. Epub 2025 Jul 16.
2
Hyperoxia-induced senescence in fetal airway smooth muscle cells: role of mitochondrial reactive oxygen species and endoplasmic reticulum stress.
Am J Physiol Lung Cell Mol Physiol. 2025 Jul 1;329(1):L1-L18. doi: 10.1152/ajplung.00348.2024. Epub 2025 Apr 4.
3
BMAL1 sex-specific effects in the neonatal mouse airway exposed to moderate hyperoxia.
Physiol Rep. 2024 Jul;12(13):e16122. doi: 10.14814/phy2.16122.
4
Exogenous hydrogen sulfide attenuates hyperoxia effects on neonatal mouse airways.
Am J Physiol Lung Cell Mol Physiol. 2024 Jan 1;326(1):L52-L64. doi: 10.1152/ajplung.00196.2023. Epub 2023 Nov 21.
5
Piezo channels in stretch effects on developing human airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2023 Nov 1;325(5):L542-L551. doi: 10.1152/ajplung.00008.2023. Epub 2023 Sep 12.
6
Oxygen and mechanical stretch in the developing lung: risk factors for neonatal and pediatric lung disease.
Front Med (Lausanne). 2023 Jun 19;10:1214108. doi: 10.3389/fmed.2023.1214108. eCollection 2023.
7
Prematurity-associated wheeze: current knowledge and opportunities for further investigation.
Pediatr Res. 2023 Jul;94(1):74-81. doi: 10.1038/s41390-022-02404-1. Epub 2022 Dec 3.
8
Hypoxia-inducible factor-1α promotes proliferation of airway smooth muscle cells through miRNA-103-mediated signaling pathway under hypoxia.
In Vitro Cell Dev Biol Anim. 2021 Dec;57(10):944-952. doi: 10.1007/s11626-021-00607-0. Epub 2021 Dec 10.
9
CD38 plays an age-related role in cholinergic deregulation of airway smooth muscle contractility.
J Allergy Clin Immunol. 2022 May;149(5):1643-1654.e8. doi: 10.1016/j.jaci.2021.10.033. Epub 2021 Nov 18.
10
Intermittent Hypoxia-Hyperoxia and Oxidative Stress in Developing Human Airway Smooth Muscle.
Antioxidants (Basel). 2021 Aug 31;10(9):1400. doi: 10.3390/antiox10091400.

本文引用的文献

1
Brain-derived neurotrophic factor induces proliferation of human airway smooth muscle cells.
J Cell Mol Med. 2012 Apr;16(4):812-23. doi: 10.1111/j.1582-4934.2011.01356.x.
2
Neurokinin-neurotrophin interactions in airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2011 Jul;301(1):L91-8. doi: 10.1152/ajplung.00320.2010. Epub 2011 Apr 22.
3
Caveolin-1 and force regulation in porcine airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2011 Jun;300(6):L920-9. doi: 10.1152/ajplung.00322.2010. Epub 2011 Mar 18.
4
Preterm birth and respiratory disease in later life.
Expert Rev Respir Med. 2010 Oct;4(5):593-604. doi: 10.1586/ers.10.59.
7
Can lineage-specific markers be identified to characterize mesenchyme-derived cell populations in the human airways?
Am J Physiol Lung Cell Mol Physiol. 2010 Aug;299(2):L169-83. doi: 10.1152/ajplung.00311.2009. Epub 2010 Apr 30.
8
Rapid effects of estrogen on intracellular Ca2+ regulation in human airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2010 Apr;298(4):L521-30. doi: 10.1152/ajplung.00287.2009. Epub 2010 Jan 22.
9
Airway structural components drive airway smooth muscle remodeling in asthma.
Proc Am Thorac Soc. 2009 Dec;6(8):683-92. doi: 10.1513/pats.200907-056DP.
10
Asthma and sarcoplasmic reticulum Ca2+ reuptake in airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2009 Oct;297(4):L794. doi: 10.1152/ajplung.00237.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验