Suppr超能文献

数据挖掘在心血管疾病预测中的应用。

Data Mining for Cardiovascular Disease Prediction.

机构信息

University of Minho, Campus of Gualtar, Braga, 4710, Portugal.

Algoritmi Research Center, University of Minho, Campus of Gualtar, Braga, 4710, Portugal.

出版信息

J Med Syst. 2021 Jan 5;45(1):6. doi: 10.1007/s10916-020-01682-8.

Abstract

Cardiovascular diseases (CVDs) aredisorders of the heart and blood vessels and are a major cause of disability and premature death worldwide. Individuals at higher risk of developing CVD must be noticed at an early stage to prevent premature deaths. Advances in the field of computational intelligence, together with the vast amount of data produced daily in clinical settings, have made it possible to create recognition systems capable of identifying hidden patterns and useful information. This paper focuses on the application of Data Mining Techniques (DMTs) to clinical data collected during the medical examination in an attempt to predict whether or not an individual has a CVD. To this end, the CRossIndustry Standard Process for Data Mining (CRISP-DM) methodology was followed, in which five classifiers were applied, namely DT, Optimized DT, RI, RF, and DL. The models were mainly developed using the RapidMiner software with the assist of the WEKA tool and were analyzed based on accuracy, precision, sensitivity, and specificity. The results obtained were considered promising on the basis of the research for effective means of diagnosing CVD, with the best model being Optimized DT, which achieved the highest values for all the evaluation metrics, 73.54%, 75.82%, 68.89%, 78.16% and 0.788 for accuracy, precision, sensitivity, specificity, and AUC, respectively.

摘要

心血管疾病(CVDs)是心脏和血管的紊乱,是全球残疾和早逝的主要原因。必须在早期发现有更高风险患 CVD 的个体,以预防早逝。计算智能领域的进步,以及临床环境中每天产生的大量数据,使得创建能够识别隐藏模式和有用信息的识别系统成为可能。本文重点介绍了数据挖掘技术(DMTs)在医疗检查中收集的临床数据中的应用,旨在预测个体是否患有 CVD。为此,遵循了 CRossIndustry 标准数据挖掘过程(CRISP-DM)方法,其中应用了五种分类器,即 DT、Optimized DT、RI、RF 和 DL。这些模型主要是使用 RapidMiner 软件与 WEKA 工具一起开发的,并根据准确性、精度、敏感性和特异性进行了分析。基于有效诊断 CVD 的研究,认为所获得的结果是有希望的,最佳模型是 Optimized DT,它在所有评估指标上都取得了最高值,分别为 73.54%、75.82%、68.89%、78.16%和 0.788,分别为准确性、精度、敏感性、特异性和 AUC。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验