Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil.
ACS Appl Mater Interfaces. 2021 Jan 20;13(2):2289-2302. doi: 10.1021/acsami.0c19041. Epub 2021 Jan 6.
Photodynamic therapy (PDT) applications are limited by the low penetration of UV-visible light into biological tissues. Considering X-rays as an alternative to excite photosensitizers (PS) in a deeper tumor, an intermediate particle able to convert the X-ray energy into visible light (scintillating nanoparticle, ScNP) is necessary. Moreover, accumulation of PS in the target cells is also required. Genetically encoded proteins could be used as a photosensitizer, allowing the exclusive expression of PS inside the tumor cells. Here, the interaction of eGFP, KillerOrange, and KillerRed proteins with LaF:Tb ScNP was investigated, for the first time, in terms of its physicochemical and energy transfer properties. The protein structure, stability, and function were evaluated upon adverse physiological conditions and X-ray irradiation. Optimal parameters for energy transfer from ScNP to the proteins were investigated, paving the way for the use of genetically encoded photosensitizers for applications in X-ray activated photodynamic therapy.
光动力疗法(PDT)的应用受到紫外可见光在生物组织中低穿透率的限制。考虑到 X 射线可以替代激发更深层肿瘤中的光敏剂(PS),需要一种能够将 X 射线能量转化为可见光的中间粒子(闪烁纳米粒子,ScNP)。此外,还需要 PS 在靶细胞中的积累。遗传编码蛋白可以用作光敏剂,允许 PS 仅在肿瘤细胞内表达。在这里,首次研究了 eGFP、KillerOrange 和 KillerRed 蛋白与 LaF:Tb ScNP 的相互作用,从物理化学和能量转移特性方面进行了研究。在不利的生理条件和 X 射线照射下,评估了蛋白质的结构、稳定性和功能。研究了从 ScNP 到蛋白质的能量转移的最佳参数,为应用于 X 射线激活光动力疗法的遗传编码光敏剂的使用铺平了道路。