文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于生物聚合物的水凝胶的多光子3D打印

Multiphoton 3D Printing of Biopolymer-Based Hydrogels.

作者信息

Parkatzidis Kostas, Chatzinikolaidou Maria, Kaliva Maria, Bakopoulou Athina, Farsari Maria, Vamvakaki Maria

机构信息

Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece.

Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

出版信息

ACS Biomater Sci Eng. 2019 Nov 11;5(11):6161-6170. doi: 10.1021/acsbiomaterials.9b01300. Epub 2019 Oct 25.


DOI:10.1021/acsbiomaterials.9b01300
PMID:33405524
Abstract

Multiphoton lithography, based on multiphoton polymerization, is a powerful technique for the fabrication of complex three-dimensional (3D) structures. Herein, we report on the photostructuring of novel biopolymer-based hybrid hydrogels, comprising gelatin methacrylamide and a water-soluble chitosan derivative, via multiphoton polymerization. The nontoxic, Food and Drug Administration-approved, biocompatible photosensitizer eosin Y was exploited as the sole photoinitiator, without the coinitiators and/or comonomer that are commonly used, allowing for further expansion of the available wavelengths up to 800 nm. Importantly, the obtained hybrid material exhibits excellent biocompatibility, evidenced by the increased proliferation of dental pulp stem cells, compared with the individual components and the polystyrene control, after 7 days in culture. Additionally, the 3D hybrid scaffolds promote the matrix mineralization, following their functionalization with bone morphogenetic protein 2. These tailor-made synthetic, biocompatible materials pave the way for further opportunities in 3D scaffold fabrication, including in situ and in vivo biofabrication.

摘要

基于多光子聚合的多光子光刻技术是制造复杂三维(3D)结构的强大技术。在此,我们报道了通过多光子聚合对新型生物聚合物基混合水凝胶进行光结构化,该水凝胶由甲基丙烯酰胺明胶和水溶性壳聚糖衍生物组成。无毒、经美国食品药品监督管理局批准且具有生物相容性的光敏剂曙红Y被用作唯一的光引发剂,无需常用的共引发剂和/或共聚单体,从而使可用波长进一步扩展至800 nm。重要的是,与单个组分和聚苯乙烯对照相比,培养7天后,牙髓干细胞增殖增加,证明所获得的杂化材料具有优异的生物相容性。此外,3D杂化支架在经骨形态发生蛋白2功能化后可促进基质矿化。这些量身定制的合成生物相容性材料为3D支架制造带来了更多机会,包括原位和体内生物制造。

相似文献

[1]
Multiphoton 3D Printing of Biopolymer-Based Hydrogels.

ACS Biomater Sci Eng. 2019-11-11

[2]
3D- Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering.

Sci Rep. 2017-10-17

[3]
Effects of 3-dimensional Bioprinting Alginate/Gelatin Hydrogel Scaffold Extract on Proliferation and Differentiation of Human Dental Pulp Stem Cells.

J Endod. 2019-5-2

[4]
Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.

J Vis Exp. 2019-12-21

[5]
Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.

Acta Biomater. 2015-5

[6]
Multiphoton crosslinking for biocompatible 3D printing of type I collagen.

Biofabrication. 2015-9-3

[7]
Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.

ACS Appl Mater Interfaces. 2020-1-17

[8]
Bio-resin for high resolution lithography-based biofabrication of complex cell-laden constructs.

Biofabrication. 2018-5-11

[9]
Femtosecond-Laser-Based 3D Printing for Tissue Engineering and Cell Biology Applications.

ACS Biomater Sci Eng. 2017-10-9

[10]
3D Printing of Regenerated Silk Fibroin and Antibody-Containing Microstructures via Multiphoton Lithography.

ACS Biomater Sci Eng. 2017-9-11

引用本文的文献

[1]
Formation of Neurointerfaces Based on Electrically Conductive Biopolymers by Two-Photon Polymerization Method.

Polymers (Basel). 2025-5-9

[2]
3D Bioprinting for Engineered Tissue Constructs and Patient-Specific Models: Current Progress and Prospects in Clinical Applications.

Adv Mater. 2024-12

[3]
3D micro/nano hydrogel structures fabricated by two-photon polymerization for biomedical applications.

Front Bioeng Biotechnol. 2024-2-16

[4]
Recent advances in GelMA hydrogel transplantation for musculoskeletal disorders and related disease treatment.

Theranostics. 2023

[5]
A Doubly Fmoc-Protected Aspartic Acid Self-Assembles into Hydrogels Suitable for Bone Tissue Engineering.

Materials (Basel). 2022-12-14

[6]
Design, Fabrication, and Application of Mini-Scaffolds for Cell Components in Tissue Engineering.

Polymers (Basel). 2022-11-22

[7]
The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity.

Mil Med Res. 2022-11-19

[8]
Two-photon polymerization for 3D biomedical scaffolds: Overview and updates.

Front Bioeng Biotechnol. 2022-8-22

[9]
Photo-Crosslinked Silk Fibroin for 3D Printing.

Polymers (Basel). 2020-12-9

[10]
Physical and Chemical Factors Influencing the Printability of Hydrogel-based Extrusion Bioinks.

Chem Rev. 2020-10-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索