Suppr超能文献

用于生物电子应用的碳纳米管增强聚(4-乙烯基苯胺)/聚苯胺双层接枝细菌纤维素

Carbon Nanotube-Reinforced Poly(4-vinylaniline)/Polyaniline Bilayer-Grafted Bacterial Cellulose for Bioelectronic Applications.

作者信息

R Rebelo Ana M, Liu Yang, Liu Changqing, Schäfer Karl-Herbert, Saumer Monika, Yang Guang

机构信息

Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, U.K.

Centre for Biological Engineering, Holywell Park, Loughborough University, Loughborough LE11 3AQ, U.K.

出版信息

ACS Biomater Sci Eng. 2019 May 13;5(5):2160-2172. doi: 10.1021/acsbiomaterials.9b00039. Epub 2019 Apr 24.

Abstract

Microbial cellulose paper treated with polyaniline and carbon nanotubes (PANI/CNTs) can be attractive as potential flexible capacitors in terms of further improvements to the conductivity and thermal resistance. The interactions between PANI and CNTs exhibit new electrochemical features with increased electrical conductivity and enhanced capacity. In this study, PANI/CNTs was incorporated into a flexible poly(4-vinylaniline)-grafted bacterial cellulose (BC/PVAN) nanocomposite substrate for further functionalization and processability. PANI/CNTs coatings with a nanorod-like structure can promote an efficient ion diffusion and charge transfer, with a significant enhancement of the electrical conductivity after CNTs reinforcement of 1 order of magnitude up to (1.0 ± 0.3) × 10 S·cm. An escalating improvement of the double charge capacity (∼54 mF) of the grafted BC nanocomposites was also detected through electrochemical analysis. The multilayered electrical coatings also reinforce the thermal resistance, preventing anticipated thermal degradation of the BC substrate. The cell viability and differentiation assays using neural stem cells (SVZ cells) testified to the cytocompatibility of the grafted BC nanocomposites, while inducing neuronal differentiation over 7 days of culture with a neurite that was 77 ± 24.7 μm long. This is promising for meeting the requirements in the construction of high-performance bioelectronic devices that can actively interface biologically, providing a friendly environment for cells while tuning the device performance.

摘要

用聚苯胺和碳纳米管(PANI/CNTs)处理的微生物纤维素纸,在进一步提高导电性和耐热性方面,作为潜在的柔性电容器具有吸引力。PANI与CNTs之间的相互作用展现出具有更高电导率和增强电容的新电化学特性。在本研究中,将PANI/CNTs掺入柔性聚(4-乙烯基苯胺)接枝细菌纤维素(BC/PVAN)纳米复合基质中,以实现进一步功能化和可加工性。具有纳米棒状结构的PANI/CNTs涂层可促进高效离子扩散和电荷转移,在CNTs增强后电导率显著提高1个数量级,达到(1.0 ± 0.3) × 10 S·cm。通过电化学分析还检测到接枝BC纳米复合材料的双电荷容量(约54 mF)不断提高。多层电涂层还增强了耐热性,防止BC基质出现预期的热降解。使用神经干细胞(SVZ细胞)进行的细胞活力和分化测定证明了接枝BC纳米复合材料的细胞相容性,同时在7天的培养过程中诱导神经元分化,长出的神经突长度为77 ± 24.7 μm。这对于满足构建能够与生物积极相互作用的高性能生物电子器件的要求很有前景,在调节器件性能的同时为细胞提供友好环境。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验